RESUMEN
Understanding the fundamental effect of the oxygen vacancy atomic structure in perovskite oxides on catalytic properties remains challenging due to diverse facets, surface sites, defects, etc. in traditional powder catalysts and the inherent structural complexity. Through quantitative synthesis of tetrahedral (LaCoO2.5-T), pyramidal (LaCoO2.5-P), and octahedral (LaCoO3) epitaxial thin films as model catalysts, we demonstrate the reactivity orders of active-site geometrical configurations in oxygen-deficient perovskites during the CO oxidation model reaction: CoO4 tetrahedron > CoO6 octahedron > CoO5 pyramid. Ambient-pressure Co L-edge and O K-edge XAS spectra clarify the dynamic evolutions of active-site electronic structures during realistic catalytic processes and highlight the important roles of defect geometrical structures. In addition, in situ XAS and resonant inelastic X-ray scattering spectra and density functional theory calculations directly reveal the nature of high reactivity for CoO4 sites and that the derived shallow-acceptor defect levels in the band structure facilitate the adsorption and activation of reactive gases, resulting in more than 23-fold enhancement for catalytic reaction rates than CoO5 sites.
RESUMEN
BACKGROUND: The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS: In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS: Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS: This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.
Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Subunidad alfa del Factor 1 Inducible por Hipoxia , FN-kappa B , Alcohol Feniletílico , Transducción de Señal , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Femenino , Línea Celular TumoralRESUMEN
Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells. However, adult tissue-derived mesenchymal stem cells encounter various obstacles, including limited tissue sources, invasive acquisition methods, cellular heterogeneity, purification challenges, cellular senescence, and diminished pluripotency and proliferation over successive passages. In this study, we used induced pluripotent stem cell-derived mesenchymal stem cells, known for their self-renewal capacity, multilineage differentiation potential, and immunomodulatory characteristics. We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury. Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation. Furthermore, the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats. Additionally, our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization. Collectively, our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats, offering promising therapeutic strategies for clinical translation.
RESUMEN
Carbon-based materials have been utilized as effective catalysts for hydrogen peroxide electrosynthesis via two-electron oxygen reduction reaction (2e ORR), however the insufficient selectivity and productivity still hindered the further industrial applications. In this work, we report the Fe-O4 motif activated graphitic carbon material which enabled highly selective H2O2 electrosynthesis operating at high current density with excellent anti-poisoning property. In the bulk production test, the concentration of H2O2 cumulated to 8.6 % in 24â h and the corresponding production rate of 33.5â mol gcat -1 h-1 outperformed all previously reported materials. Theoretical model backed by in situ characterization verified α-C surrounding the Fe-O4 motif as the actual reaction site in terms of thermodynamics and kinetics aspects. The strategy of activating carbon reaction site by metal center via oxo-bridge provides inspiring insights for the rational design of carbon materials for heterogeneous catalysis.
RESUMEN
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Biomarcadores/metabolismo , Biomarcadores/análisis , Metabolómica/métodos , Genómica , Proteómica/métodos , Animales , MultiómicaRESUMEN
The Jahn-Teller effect (JTE) arising from lattice-electron coupling is a fascinating phenomenon that profoundly affects important physical properties in a number of transition-metal compounds. Controlling JT distortions and their corresponding electronic structures is highly desirable to tailor the functionalities of materials. Here, we propose a local coordinate strategy to regulate the JTE through quantifying occupancy in the [Formula: see text] and [Formula: see text] orbitals of Mn and scrutinizing the symmetries of the ligand oxygen atoms in MnO6 octahedra in LiMn2O4 and Li0.5Mn2O4. The effectiveness of such a strategy has been demonstrated by constructing P2-type NaLi x Mn1 - x O2 oxides with different Li/Mn ordering schemes. In addition, this strategy is also tenable for most 3d transition-metal compounds in spinel and perovskite frameworks, indicating the universality of local coordinate strategy and the tunability of the lattice-orbital coupling in transition-metal oxides. This work demonstrates a useful strategy to regulate JT distortion and provides useful guidelines for future design of functional materials with specific physical properties.
RESUMEN
BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Ratas Sprague-Dawley , Ingeniería de Tejidos , Animales , Ratas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Masculino , Tejido Adiposo/citología , Tejido Adiposo/metabolismoRESUMEN
γ-Butyrobetaine hydroxylase (BBOX) is a non-heme FeII/2OG dependent enzyme that is able to perform two different kinds of catalytic reactions on 3-(2,2,2-trimethylhydrazinium) propionate (THP) to produce distinct catalytic products. Although the structure of BBOX complexed with THP has been resolved, the details of its catalytic mechanism are still elusive. In this study, by employing molecular dynamics (MD) simulations and density functional theory (DFT) calculations, the mechanism of the THP oxidative rearrangement reactions catalysed by BBOX was investigated. Our calculations revealed how the enzyme undergoes a conformational conversion to initiate the catalytic reactions. In the first catalytic step, BBOX performs hydrogen abstraction from the substrate THP as a common non-heme iron enzyme. Due to the structure of the substrate stabilizing the radical species and polarizing the adjacent N-N bond, in the next step, THP takes the pathway for N-N bond homolysis but not regular hydroxyl rebounding. The cleaved ammonium radical could either react with the hydroxyl group on the iron centre of the enzyme or recombine with the other cleaved fragment of the substrate to generate the rearranged product. This study revealed the catalytic mechanism of BBOX, detailing how the enzyme and the substrate regulated the hydroxyl rebound process to generate various products.
RESUMEN
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Asunto(s)
Proteínas de Homeodominio , Hipoventilación , Bulbo Raquídeo , Neuronas , Factores de Transcripción , Hipoventilación/congénito , Hipoventilación/genética , Animales , Neuronas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Bulbo Raquídeo/metabolismo , Apnea Central del Sueño/genética , Fenotipo , HumanosRESUMEN
The investigation of strong coupling between light and matter is an important field of research. Its significance arises not only from the emergence of a plethora of intriguing chemical and physical phenomena, often novel and unexpected, but also from its provision of important tool sets for the design of core components for novel chemical, electronic, and photonic devices such as quantum computers, lasers, amplifiers, modulators, sensors and more. Strong coupling has been demonstrated for various material systems and spectral regimes, each exhibiting unique features and applications. In this perspective, we will focus on a sub-field of this domain of research and discuss the strong coupling between metamaterials and photonic cavities at THz frequencies. The metamaterials, themselves electromagnetic resonators, serve as "artificial atoms". We provide a concise overview of recent advances and outline possible research directions in this vital and impactful field of interdisciplinary science.
RESUMEN
BACKGROUND AND PURPOSE: Clinical studies showed that prolonged infusion of methotrexate (MTX) leads to more severe adverse reactions than short infusion of MTX at the same dose. We hypothesized that it is the saturation of folate polyglutamate synthetase (FPGS) at high MTX concentration that limits the intracellular synthesis rate of methotrexate polyglutamate (MTX-PG). Due to a similar accumulation rate, a longer infusion duration may increase the concentration of MTX-PG and, result in more serious adverse reactions. In this study, we validated this hypothesis. EXPERIMENTAL APPROACH: A549, BEL-7402 and MHCC97H cell lines were treated with MTX at gradient concentrations. Liquid chromatograph-mass spectrometer (UPLC-MS/MS) was used to quantify the intracellular concentration of MTX-PG and the abundance of FPGS and γ-glutamyl hydrolase (GGH). High quality data were used to fit the cell pharmacokinetic model. KEY RESULTS: Both cell growth inhibition rate and intracellular MTX-PG concentration showed a nonlinear relationship with MTX concentration. The parameter Vmax in the model, which represents the synthesis rate of MTX-PG, showed a strong correlation with the abundance of intracellular FPGS. CONCLUSION AND IMPLICATIONS: According to the model fitting results, it was confirmed that the abundance of FPGS is a decisive factor limiting the synthesis rate of MTX-PG. The proposed hypothesis was verified in this study. In addition, based on the intracellular metabolism, a reasonable explanation was provided for the correlation between the severity of adverse reactions of MTX and infusion time. This study provides a new strategy for the individualized treatment and prediction of efficacy/side effects of MTX.
Asunto(s)
Metotrexato , Péptido Sintasas , Ácido Poliglutámico , gamma-Glutamil Hidrolasa , Metotrexato/farmacocinética , Metotrexato/análogos & derivados , gamma-Glutamil Hidrolasa/metabolismo , Péptido Sintasas/metabolismo , Humanos , Línea Celular Tumoral , Ácido Poliglutámico/análogos & derivados , Espectrometría de Masas en Tándem , Proliferación Celular/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacologíaRESUMEN
AIMS: Zinc-finger protein 418 (ZNF418) has been confirmed to be expressed in myocardial tissue. However, the role and mechanism of ZNF418 in pathological myocardial remodelling after myocardial infarction (MI) have not been reported. This study was to elucidate the effect and mechanism of ZNF418 on ventricular remodelling after MI in mice. METHODS AND RESULTS: MI mice and H9c2 cardiomyocytes were used to conduct in vivo and in vitro experiments, respectively. ZNF418 expression was regulated by adeno-associated virus 9 and adenovirus vectors. Pathological analysis, echocardiography, and molecular analysis were performed. ZNF418 was down-regulated in the left ventricular tissues of post-MI mice. In contrast, ZNF418 overexpression decreased mortality and improved cardiac function in MI mice. The MI mice exhibited a significantly increased cross-sectional area of myocardial cells and elevated protein expression levels of myocardial hypertrophy markers ANP, BNP, and ß-MHC (all P < 0.05). Moreover, a significantly increased area of myocardial fibrosis and protein expression levels of myocardial fibrosis markers collagen I, collagen III, and CTGF were observed in MI mice (all P < 0.05) in MI mice. All of the above negative effects in MI mice were ameliorated in ZNF418 overexpressed mice (all P < 0.05). Mechanistically, ZNF418 overexpression inhibited the activation of the MAPK signalling pathway, as evidenced by the in vivo and in vitro experiments. CONCLUSIONS: Overexpression of ZNF418 could improve cardiac function and inhibit pathological cardiac remodelling by inhibiting the MAPK signalling pathway in post-MI mice.
Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio , Miocitos Cardíacos , Remodelación Ventricular , Animales , Remodelación Ventricular/fisiología , Infarto del Miocardio/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Células CultivadasRESUMEN
OBJECTIVES: This study presents a novel computer-aided diagnosis (CADx) designed for optically diagnosing colorectal polyps using white light imaging (WLI).We aimed to evaluate the effectiveness of the CADx and its auxiliary role among endoscopists with different levels of expertise. METHODS: We collected 2,324 neoplastic and 3,735 nonneoplastic polyp WLI images for model training, and 838 colorectal polyp images from 740 patients for model validation. We compared the diagnostic accuracy of the CADx with that of 15 endoscopists under WLI and narrow band imaging (NBI). The auxiliary benefits of CADx for endoscopists of different experience levels and for identifying different types of colorectal polyps was also evaluated. RESULTS: The CADx demonstrated an optical diagnostic accuracy of 84.49%, showing considerable superiority over all endoscopists, irrespective of whether WLI or NBI was used (P < 0.001). Assistance from the CADx significantly improved the diagnostic accuracy of the endoscopists from 68.84% to 77.49% (P = 0.001), with the most significant impact observed among novice endoscopists. Notably, novices using CADx-assisted WLI outperform junior and expert endoscopists without such assistance. CONCLUSIONS: The CADx demonstrated a crucial role in substantially enhancing the precision of optical diagnosis for colorectal polyps under WLI and showed the greatest auxiliary benefits for novice endoscopists.
Asunto(s)
Pólipos del Colon , Colonoscopía , Diagnóstico por Computador , Imagen de Banda Estrecha , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Humanos , Masculino , Femenino , Adulto , Anciano , Neoplasias Colorrectales/diagnósticoRESUMEN
The scalable artificial photosynthesis composed of photovoltaic electrolysis and photothermal catalysis is limited by inefficient photothermal CO2 hydrogenation under weak sunlight irradiation. Herein, NiO nanosheets supported with Ag single atoms [two-dimensional (2D) Ni1Ag0.02O1] are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g-1 hour-1 of CO production rate under 1-sun irradiation. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO2 and weaken the CO adsorption, resulting in 1434 mmol g-1 hour-1 of CO yield at 300°C. Furthermore, we integrate the 2D Ni1Ag0.02O1-supported photothermal reverse water-gas shift reaction with commercial photovoltaic electrolytic water splitting to construct a 103-m2 scale artificial photosynthesis system (CO2 + H2O â CO + H2 + O2), which achieves more than 22 m3/day of green syngas with an adjustable H2/CO ratio (0.4-3) and a photochemical energy conversion efficiency of >17%. This research charts a promising course for designing practical, natural sunlight-driven artificial photosynthesis systems.
RESUMEN
BACKGROUND: The objective of this study is to identify and evaluate the risk factors associated with the development of postoperative pulmonary complications (PPCs) in elderly patients undergoing video-assisted thoracoscopic surgery lobectomy under general anesthesia. METHODS: The retrospective study consecutively included elderly patients (≥ 70 years old) who underwent thoracoscopic lobectomy at Xuanwu Hospital of Capital Medical University from January 1, 2018 to August 31, 2023. The demographic characteristics, the preoperative, intraoperative and postoperative parameters were collected and analyzed using multivariate logistic regression to identify the prediction of risk factors for PPCs. RESULTS: 322 patients were included for analysis, and 115 patients (35.7%) developed PPCs. Multifactorial regression analysis showed that ASA ≥ III (P = 0.006, 95% CI: 1.230 â¼ 3.532), duration of one-lung ventilation (P = 0.033, 95% CI: 1.069 â¼ 4.867), smoking (P = 0.027, 95% CI: 1.072 â¼ 3.194) and COPD (P = 0.015, 95% CI: 1.332 â¼ 13.716) are independent risk factors for PPCs after thoracoscopic lobectomy in elderly patients. CONCLUSION: Risk factors for PPCs are ASA ≥ III, duration of one-lung ventilation, smoking and COPD in elderly patients over 70 years old undergoing thoracoscopic lobectomy. It is necessary to pay special attention to these patients to help optimize the allocation of resources and enhance preventive efforts.
Asunto(s)
Anestesia General , Neumonectomía , Complicaciones Posoperatorias , Cirugía Torácica Asistida por Video , Humanos , Estudios Retrospectivos , Anciano , Cirugía Torácica Asistida por Video/efectos adversos , Cirugía Torácica Asistida por Video/métodos , Factores de Riesgo , Femenino , Masculino , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Anestesia General/efectos adversos , Neumonectomía/efectos adversos , Neumonectomía/métodos , Anciano de 80 o más Años , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/etiologíaRESUMEN
Charge loss at grain boundaries of kesterite Cu2ZnSn(S, Se)4 polycrystalline absorbers is an important cause limiting the performance of this emerging thin-film solar cell. Herein, we report a Pd element assisted reaction strategy to suppress atomic vacancy defects in GB regions. The Pd, on one hand in the form of PdSex compounds, can heterogeneously cover the GBs of the absorber film, suppressing Sn and Se volatilization loss and the formation of their vacancy defects (i.e. VSn and VSe), and on the other hand, in the form of Pd(II)/Pd(IV) redox shuttle, can assist the capture and exchange of Se atoms, thus contributing to eliminating the already-existing VSe defects within GBs. These collective effects have effectively reduced charge recombination loss and enhanced p-type characteristics of the kesterite absorber. As a result, high-performance kesterite solar cells with a total-area efficiency of 14.5% (certified at 14.3%) have been achieved.
RESUMEN
BACKGROUND: The relationship between smoking and the risk of acute respiratory distress syndrome (ARDS) has been recognized, but the conclusions have been inconsistent. This systematic review and meta-analysis investigated the association between smoking and ARDS risk in adults. METHODS: The PubMed, EMBASE, Cochrane Library, and Web of Science databases were searched for eligible studies published from January 1, 2000, to December 31, 2023. We enrolled adult patients exhibiting clinical risk factors for ARDS and smoking condition. Outcomes were quantified using odds ratios (ORs) for binary variables and mean differences (MDs) for continuous variables, with a standard 95% confidence interval (CI). RESULTS: A total of 26 observational studies involving 36,995 patients were included. The meta-analysis revealed a significant association between smoking and an increased risk of ARDS (OR 1.67; 95% CI 1.33-2.08; P < 0.001). Further analysis revealed that the associations between patient-reported smoking history and ARDS occurrence were generally similar to the results of all the studies (OR 1.78; 95% CI 1.38-2.28; P < 0.001). In contrast, patients identified through the detection of tobacco metabolites (cotinine, a metabolite of nicotine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of tobacco products) showed no significant difference in ARDS risk (OR 1.19; 95% CI 0.69-2.05; P = 0.53). The smoking group was younger than the control group (MD - 7.15; 95% CI - 11.58 to - 2.72; P = 0.002). Subgroup analysis revealed that smoking notably elevated the incidence of ARDS with extrapulmonary etiologies (OR 1.85; 95% CI 1.43-2.38; P < 0.001). Publication bias did not affect the integrity of our conclusions. Sensitivity analysis further reinforced the reliability of our aggregated outcomes. CONCLUSIONS: There is a strong association between smoking and elevated ARDS risk. This emphasizes the need for thorough assessment of patients' smoking status, urging healthcare providers to vigilantly monitor individuals with a history of smoking, especially those with additional extrapulmonary risk factors for ARDS.
Asunto(s)
Síndrome de Dificultad Respiratoria , Fumar , Humanos , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/etiología , Fumar/efectos adversos , Fumar/epidemiología , Factores de RiesgoRESUMEN
Robust ferroelectricity in nanoscale fluorite oxide-based thin films enables promising applications in silicon-compatible non-volatile memories and logic devices. However, the polar orthorhombic (O) phase of fluorite oxides is a metastable phase that is prone to transforming into the ground-state non-polar monoclinic (M) phase, leading to macroscopic ferroelectric degradation. Here we investigate the reversibility of the O-M phase transition in ZrO2 nanocrystals via in situ visualization of the martensitic transformation at the atomic scale. We reveal that the reversible shear deformation pathway from the O phase to the monoclinic-like (M') state, a compressive-strained M phase, is protected by 90° ferroelectric-ferroelastic switching. Nevertheless, as the M' state gradually accumulates localized strain, a critical tensile strain can pin the ferroelastic domain, resulting in an irreversible M'-M strain relaxation and the loss of ferroelectricity. These findings demonstrate the key role of ferroelastic switching in the reversibility of phase transition and also provide a tensile-strain threshold for stabilizing the metastable ferroelectric phase in fluorite oxide thin films.
RESUMEN
BACKGROUND: Calcium-free (Ca-free) solutions are theoretically the most ideal for regional citrate anticoagulation (RCA) in continuous renal replacement therapy (CRRT). However, the majority of medical centers in China had to make a compromise of using commercially available calcium-containing (Ca-containing) solutions instead of Ca-free ones due to their scarcity. This study was designed to probe into the potential of Ca-containing solution as a secure and efficient substitution for Ca-free solutions. METHODS: In this prospective, randomized single-center trial, 99 patients scheduled for CRRT were randomly assigned in a 1:1:1 ratio to one of three treatment groups: continuous veno-venous hemodialysis Ca-free dialysate (CVVHD Ca-free) group, continuous veno-venous hemodiafiltration calcium-free dialysate (CVVHDF Ca-free) group, and continuous veno-venous hemodiafiltration Ca-containing dialysate (CVVHDF Ca-containing) group at cardiac intensive care unit (CICU). The primary endpoint was the incidence of metabolic complications. The secondary endpoints included premature termination of treatment, thrombus of filter, and bubble trap after the process. RESULTS: The incidence of citrate accumulation (18.2% vs. 12.1% vs. 21.2%) and metabolic alkalosis (12.1% vs. 0% vs. 9.1%) did not significantly differ among three groups (p > 0.05 for both). The incidence of premature termination was comparable among the groups (18.2% vs. 9.1% vs. 9.1%, p = 0.582). The thrombus level of the filter and bubble trap was similar in the three groups (p > 0.05 for all). CONCLUSIONS: In RCA-CRRT for CICU population, RCA-CVVHDF with Ca-containing solutions and traditional RCA with Ca-free solutions had a comparable safety and feasibility. TRIAL REGISTRATION: ChiCTR2100048238 in the Chinese Clinical Trial Registry.
Asunto(s)
Anticoagulantes , Ácido Cítrico , Terapia de Reemplazo Renal Continuo , Soluciones para Diálisis , Estudios de Factibilidad , Humanos , Femenino , Masculino , Terapia de Reemplazo Renal Continuo/métodos , Persona de Mediana Edad , Anticoagulantes/administración & dosificación , Estudios Prospectivos , Ácido Cítrico/administración & dosificación , Soluciones para Diálisis/administración & dosificación , Soluciones para Diálisis/química , Anciano , China , Calcio/sangre , Calcio/administración & dosificación , Lesión Renal Aguda/terapiaRESUMEN
Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.