Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095180

RESUMEN

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Modelos Químicos , Termodinámica , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/química , Material Particulado/análisis , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
2.
Plant Physiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325738

RESUMEN

Ralstonia solanacearum causes lethal bacterial wilt diseases in numerous crops, resulting in considerable yield losses. Harnessing genetic resistance is desirable for safeguarding plants against phytopathogens. However, genetic resources resistant to bacterial wilt are limited in crops. RipE1, a conserved type Ⅲ effector with cysteine protease activity, is recognized in Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana). Here, using a virus-induced gene silencing approach, we identified the gene encoding N. benthamiana homologue of Ptr1 (NbPtr1a), a coiled-coil nucleotide-binding leucine-rich repeat receptor (NLR) recognizing RipE1. Silencing or editing NbPtr1a completely abolished RipE1-induced cell death, indicating recognition of RipE1 by NbPtr1a. Genetic complementation confirmed this recognition, which is conserved across multiple solanaceous plants. Expression of RipE1 in planta or within pathogenic bacteria promoted pathogen colonization of Nbptr1a mutant plants, demonstrating its virulence function independent of NLR recognition. Silencing NbRIN4 enhanced RipE1-induced cell death, while expressing NbRIN4 inhibited it, suggesting that NbRIN4 is involved in recognition of NbPtr1a-RipE1. Furthermore, RipE1 associated with and cleaved NbRIN4, AtRIN4, and tomato (Solanum lycopersicum) SlRIN4 proteins through its cysteine protease activity. Silencing NbRIN4 in Nbptr1a mutants did not prevent RipE1 from promoting pathogen colonization, suggesting that NbRIN4 is not the primary target for RipE1-mediated virulence. Additionally, NbRIN4 suppressed self-association of the coiled-coil domain of NbPtr1a, which is critical for NbPtr1a-mediated cell death and resistance. Finally, we demonstrated that activation of NbPtr1a requires RipE1-mediated elimination of NbRIN4. Given the conserved nature of RipE1, Ptr1 holds great potential for protecting crops from diverse R. solanacearum strains and other distinct pathogens.

3.
Microorganisms ; 12(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39338418

RESUMEN

Pullorum disease, an intestinal disease in chickens caused by Salmonella enterica serovar pullorum (S. Pullorum), is a significant threat to the poultry industry and results in substantial economic losses. The bacteria's transmission, both vertical and horizontal, makes it difficult to completely eliminate it. Control strategies for pullorum disease primarily involve stringent eradication programs that cull infected birds and employ antibiotics for treatment. However, eradication programs are costly, and antibiotic use is restricted. Therefore, developing alternative control strategies is essential. Increasingly, studies are focusing on modulating the gut microbiota to control intestinal diseases. Modulating the chicken gut microbiota may offer a novel strategy for preventing and controlling pullorum disease in poultry. However, the impact of S. Pullorum on the chicken gut microbiota has not been well established, prompting our exploration of the relationship between S. Pullorum and the chicken gut microbiota in this study. In this study, we initially analyzed the dynamic distribution of the gut microbiota in chickens infected with S. Pullorum. Alpha diversity analysis revealed a decrease in observed OTUs and the Shannon diversity index in the infected group, suggesting a reduction in the richness of the chicken gut microbiota due to S. Pullorum infection. Principal coordinate analysis (PCoA) showed distinct clusters between the gut microbiota of infected and uninfected groups, indicating S. Pullorum infection changed the chicken gut microbiota structure. Specifically, S. Pullorum infection enriched the relative abundance of the genera Escherichia-Shigella (65% in infected vs. 40.6% in uninfected groups) and Enterococcus (10.8% vs. 3.7%) while reducing the abundance of Lactobacillus (9.9% vs. 32%) in the chicken microbiota. Additionally, based on the observed changes in the chicken gut microbiota, we isolated microorganisms, including Bifidobacterium pseudolongum, Streptococcus equi and Lacticaseibacillus paracasei (L. paracasei), which were decreased by S. Pullorum infection. Notably, the L. paracasei Lp02 strain was found to effectively inhibit S. Pullorum proliferation in vitro and alleviate its infection in vivo. We found that S. Pullorum infection reduced the richness of the chicken gut microbiota and enriched the relative abundance of the genera Escherichia-Shigella and Enterococcus while decreasing the abundance of the anaerobic genus Lactobacillus. Furthermore, microbiota analysis enabled the isolation of several antimicrobial microorganisms from healthy chicken feces, with a L. paracasei strain notably inhibiting S. Pullorum proliferation in vitro and alleviating its infection in vivo. Overall, this research enhances our understanding of the interaction between gut microbiota and pathogen infection, as well as offers new perspectives and strategies for modulating the chicken gut microbiota to control pullorum disease.

4.
Biochem Genet ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300006

RESUMEN

Severe Corona Virus Disease 2019 (COVID-19) patients may develop acute respiratory distress syndrome (ARDS). Modified Ginseng Baidu Powder (referred to as Baidu Powder) was used for respiratory system diseases caused by colds. To study the effect of Baidu Powder on protecting ARDS mice model and its underlying active ingredients and targets intervening in COVID-19. The optimal LPS concentration was selected for the induction of mouse ARDS model, and the protective effect of Baidu Powder prophylactic administration on LPS-induced ARDS mouse models was explored by mouse survival time analysis, lung wet/dry weight (W/D) ratio, pathological staining, and inflammatory factor detection. On the basis of pharmacodynamics, the network pharmacological analysis was used for target prediction for future mechanism study. 5 mg/kg LPS was selected for the construction of a mouse ARDS model, based on a mortality rate of 87% and the lung W/D ratio of 5.29 ± 0.23. Prophylactic administration of Baidu Powder at 125 g/L significantly reduced death, lung damage, inflammatory cell infiltration, and cytokine production (TNF-α, IL-6, and IL-10) caused by LPS-induced ARDS. The results of network pharmacological analysis showed that 42 target genes of Baidu Powder intervening in COVID-19 were involved in 30 biological processes related to COVID-19 and inflammation, and 11 signaling pathways related to lung diseases or inflammation. 5 mg/kg LPS can successfully establish a mice ARDS disease model; 125 g/L Baidu Powder prophylactic administration does not have toxicity and has a certain effect on protecting ARDS mouse models induced by LPS. Baidu Powder may intervene COVID-19-induced ARDS through multiple targets.

5.
Front Cardiovasc Med ; 11: 1400643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221422

RESUMEN

Background: Atrial fibrillation (AF) is one of the most prevalent arrhythmias and is characterized by a high risk of heart failure and embolic stroke, yet its underlying mechanism is unclear. The primary goal of this study was to establish a miRNA-mRNA network and identify the miRNAs associated with chronic AF by bioinformatics and experimental validation. Methods: The GSE79768 dataset was collected from the Gene Expression Omnibus(GEO) database to extract data from patients with or without persistent AF. Differentially expressed genes (DEGs) were identified in left atrial appendages (LAAs). The STRING platform was utilized for protein-protein interaction (PPI) network analysis. The target miRNAs for the top 20 hub genes were predicted by using the miRTarBase Web tool. The miRNA-mRNA network was established and visualized using Cytoscape software. The key miRNAs selected for verification in the animal experiment were confirmed by miRwalk Web tool. We used a classic animal model of rapid ventricular pacing for chronic AF. Two groups of animals were included in the experiment, namely, the ventricular pacing group (VP group), where ventricular pacing was maintained at 240-280 bpm for 2 weeks, and the control group was the sham-operated group (SO group). Finally, we performed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to validate the expression of miR-1 and miR-499 in LAA tissues of the VP group and the SO group. Left atrial fibrosis and apoptosis were evaluated by Masson staining and caspase-3 activity assays, respectively. Results: The networks showed 48 miRNAs in LAA tissues. MiR-1 and miR-499 were validated using an animal model of chronic AF. The expression level of miR-1 was increased, and miR-499 was decreased in VP group tissues compared to SO group tissues in LAAs (P < 0.05), which were correlated with left atrial fibrosis and apoptosis in AF. Conclusion: This study provides a better understanding of the alterations in miRNA-1 and miR-499 in chronic AF from the perspective of the miRNA-mRNA network and corroborates findings through experimental validation. These findings may offer novel potential therapeutic targets for AF in the future.

6.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201387

RESUMEN

In the avian species, genetic modification by cell nuclear transfer is infeasible due to its unique reproductive system. The in vitro primordial germ cell modification approach is difficult and cumbersome, although it is the main method of genetic modification in chickens. In the present study, the adenoviral CRISPR/Cas9 vector was directly microinjected into the dorsal aorta of chicken embryos to achieve in vivo genetic modification. The results demonstrated that keratin 75-like 4 (KRT75L4), a candidate gene crucial for feather development, was widely knocked out, and an 8bp deletion was the predominant mutation that occurred in multiple tissues in chimeras, particularly in the gonad (2.63-11.57%). As we expected, significant modification was detected in the sperm of G0 (0.16-4.85%), confirming the potential to generate homozygous chickens and establishing this vector as a simple and effective method for genetic modification in avian species.


Asunto(s)
Adenoviridae , Aorta , Sistemas CRISPR-Cas , Pollos , Vectores Genéticos , Animales , Embrión de Pollo , Vectores Genéticos/genética , Pollos/genética , Adenoviridae/genética , Aorta/metabolismo , Edición Génica/métodos , Masculino
7.
Environ Int ; 190: 108910, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39094407

RESUMEN

Although most source apportionments of VOCs use mixing ratios, about 23 % of published studies use mass concentrations. Thus, systematically exploring the changes in VOC source apportioned results caused by metric differences is important to assess the differences in key precursor apportionment results given the observed increases in O3 pollution situation. Different monitoring instruments measured hourly VOC volumetric concentrations in three typical Chinese cities (i.e., Qingdao, Shijiazhuang, and Zhumadian). Converting volumetric to mass concentrations under standard and/or actual temperature-pressure conditions, VOC values with different metrics were obtained. The impacts of different metrics on the source apportionments were then investigated. Compared to the positive matrix factorization of the volumetric data (VC-PMF), the VOC species concentrations with low relative molecular mass (RMM) in the factor profiles substantially decreased in mass data analyses (MC-PMF). However, those species with high RMM substantially increased. There were no substantial differences in the apportioned source contributions based on standard and actual condition mass concentrations. However, the high-low rankings of percent contributions apportioned using the volumetric and mass data produced substantial differences. Compared with the VC-PMF results, the percent contributions of sources dominated by species with low RMM (e.g., natural gas usage and mixed sources containing natural gas usage) apportioned by MC-PMF decreased, while those of sources that emitted high RMM species (e.g., solvent usage and mixed sources containing solvent usage) increased. Source apportionments based on the volumetric concentration data had more practical significance compared to the mass concentration data results for control strategy development since the mass data analyses created issues.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , China , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/estadística & datos numéricos
8.
Angew Chem Int Ed Engl ; 63(35): e202406927, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39011764

RESUMEN

The mature synthetic methodologies enable us to rationally design and produce chiral nanographenes (NGs), most of which consist of multiple helical motifs. However, inherent chirality originating from twisted geometry has just emerged to be employed in chiral NGs. Herein, we report a red-emissive chiral NG constituted of orthogonally arranged two-fold twisted π-skeletons at a contorted pyrene core which contributes to optical transitions of S0→S1 and vice versa. The thus-obtained NG exhibited a robustness on its redox properties through 2e- uptake/release. The chemical oxidation generated stable radical cation whose absorption covers near-infrared I and II regions. Overall, the contorted pyrene core governs electronic nature of the chiral NG. The twist operation on NGs would be, therefore, a design strategy to alter conventional chirality induction on NGs.

9.
Sci Data ; 11(1): 741, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972874

RESUMEN

Our study presents the assembly of a high-quality Taihu goose genome at the Telomere-to-Telomere (T2T) level. By employing advanced sequencing technologies, including Pacific Biosciences HiFi reads, Oxford Nanopore long reads, Illumina short reads, and chromatin conformation capture (Hi-C), we achieved an exceptional assembly. The T2T assembly encompasses a total length of 1,197,991,206 bp, with contigs N50 reaching 33,928,929 bp and scaffold N50 attaining 81,007,908 bp. It consists of 73 scaffolds, including 38 autosomes and one pair of Z/W sex chromosomes. Importantly, 33 autosomes were assembled without any gap, resulting in a contiguous representation. Furthermore, gene annotation efforts identified 34,898 genes, including 436,162 RNA transcripts, encompassing 806,158 exons, 743,910 introns, 651,148 coding sequences (CDS), and 135,622 untranslated regions (UTR). The T2T-level chromosome-scale goose genome assembly provides a vital foundation for future genetic improvement and understanding the genetic mechanisms underlying important traits in geese.


Asunto(s)
Gansos , Genoma , Telómero , Animales , Gansos/genética , Telómero/genética , Anotación de Secuencia Molecular
10.
Heliyon ; 10(13): e33056, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027544

RESUMEN

A vast amount of knowledge has been acquired through human activities such as farming, hunting, and fishing. Throughout history, humans have utilized living creatures for disease treatment, relying on the natural world's healing powers. The special "healers" may be able to treat patients via the power of nature. However, there was no systematic introduction or summary of these treatments. Therefore, we conducted a literature review based on PubMed, Google Scholar, Web of Science, Scopus, CNKI and WanFang DATA. Here, we defined this unique method as "animal healer" and six common kinds of animal healers were reviewed. These are fish therapy, pet therapy, worm therapy, leech therapy, maggot therapy, and bee therapy. According to the different characteristics of healers, treatment methods mainly included bite, parasitism, contact and communication. With the advantages of green and effectiveness, animal healers have great therapy potential against a variety of refractory diseases. The main purpose of this review is to draw people's attention to animal healer, promote it to become a possible clinical treatment strategy, and make further exploration in species cultivation, mechanism research, animal welfare, standard setting, safety evaluation and other aspects. In the future, animal healers will play an increasingly important role in medicine and hopefully solve more medical problems and dilemmas.

11.
J Antimicrob Chemother ; 79(8): 2048-2052, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906827

RESUMEN

BACKGROUND: Elizabethkingia spp. are emerging as nosocomial pathogens causing various infections. These pathogens express resistance to a broad range of antibiotics, thus requiring antimicrobial combinations for coverage. However, possible antagonistic interactions between antibiotics have not been thoroughly explored. This study aimed to evaluate the effectiveness of antimicrobial combinations against Elizabethkingia infections, focusing on their impact on pathogenicity, including biofilm production and cell adhesion. METHODS: Double-disc diffusion, time-kill, and chequerboard assays were used for evaluating the combination effects of antibiotics against Elizabethkingia spp. We further examined the antagonistic effects of antibiotic combinations on biofilm formation and adherence to A549 human respiratory epithelial cells. Further validation of the antibiotic interactions and their implications was performed using ex vivo hamster precision-cut lung sections (PCLSs) to mimic in vivo conditions. RESULTS: Antagonistic effects were observed between cefoxitin, imipenem and amoxicillin/clavulanic acid in combination with vancomycin. The antagonism of imipenem toward vancomycin was specific to its effects on the genus Elizabethkingia. Imipenem further hampered the bactericidal effect of vancomycin and impaired its inhibition of biofilm formation and the adhesion of Elizabethkingia meningoseptica ATCC 13253 to human cells. In the ex vivo PCLS model, vancomycin exhibited dose-dependent bactericidal effects; however, the addition of imipenem also reduced the effect of vancomycin. CONCLUSIONS: Imipenem reduced the bactericidal efficacy of vancomycin against Elizabethkingia spp. and compromised its capacity to inhibit biofilm formation, thereby enhancing bacterial adhesion. Clinicians should be aware of the potential issues with the use of these antibiotic combinations when treating Elizabethkingia infections.


Asunto(s)
Antibacterianos , Biopelículas , Infecciones por Flavobacteriaceae , Imipenem , Pruebas de Sensibilidad Microbiana , Vancomicina , Animales , Imipenem/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Humanos , Vancomicina/farmacología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Flavobacteriaceae/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Células A549 , Cricetinae , Interacciones Farmacológicas , Pulmón/microbiología
12.
Sci Total Environ ; 932: 172929, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703852

RESUMEN

Firework (FW) events occur during various festivals worldwide and substantially negatively influence both air quality and human health. However, the effects of FWs on the chemical properties and formation of organic aerosols are far from clear. In this study, fine particulate matter (PM2.5) samples were collected in a suburban area in Qingdao, China during the Chinese Spring Festival. The concentrations of chemical species (especially carbonaceous components) in PM2.5 were measured using a combination of several state-of-the-art techniques. Our results showed that mass concentrations of water-soluble sulfate, potassium and chloride ions, and organic carbon drastically increased and became the predominant components in PM2.5 during FW events. Correspondingly, both the number and fractional contributions of sulfur (S)-containing subgroups (e.g., CHOS and CHONS compounds) and some chlorine (Cl)-containing organic (e.g., CHOSCl and CHONSCl) compounds identified using ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) increased. The S- and Cl-containing compounds unique to the FW display period were identified, and their chemical characterization, sources, and formation mechanisms were elucidated by combining FT-ICR MS and quantum chemical calculations. Our results suggest that FW emissions play notable roles in both primary and secondary organic aerosol formation, especially for CHOS- and Cl-containing organic compounds.

13.
Front Plant Sci ; 15: 1369330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576782

RESUMEN

The plant pathogenic fungus Blumeria graminis f. sp. tritici infects wheat and reduces its yield. The policy of reducing fertilizer and biocide use in sustainable agriculture has prompted researchers to develop more green and efficient management strategies. In this study, a novel nanoprotective membrane (kaolin-nano titanium dioxide-liquid paraffin, referred to as KTP) that could effectively prevent powdery mildew of wheat was prepared by using 1 g/L kaolin, 2 g/L nanotitanium dioxide and 8% (v/v) liquid paraffin. The prevention and control effects of KTP spraying in advance in the pot and field experiments were 98.45% and 83.04%, respectively. More importantly, the weight of 1000 grains of wheat pretreated with KTP was 2.56 g higher than that of wheat infected with powdery mildew, significantly improving wheat yield. KTP delayed the germination of powdery mildew spores on the leaf surface, and inhibited the formation of mycelia. In addition, KTP did not affect the growth of wheat or the survival of earthworms. KTP nanoprotective membrane are a green and safe prevention and control materials that are which is expected to be widely used in agriculture to control wheat powdery mildew.

14.
Org Lett ; 26(7): 1364-1369, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38358273

RESUMEN

The reaction of 4/5-carbonyl-cycloalkenone 1 or its achiral isomer 1' with organoboronic acid 2 in the presence of a chiral diene (S,S)-Fc-tfb-rhodium catalyst gave disubstituted trans-cycloalkanone 3 with high diastereo- and enantioselectivity. This highly efficient dynamic kinetic resolution is achieved by fast racemization of 1 through the formation of a dienolate followed by kinetic resolution with the chiral catalyst. The utility is demonstrated by the synthesis of key intermediates en route to (-)-cannabidiol.

15.
Sci Data ; 11(1): 162, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307880

RESUMEN

The Alectoris Chukar (chukar) is the most geographically widespread partridge species in the world, demonstrating exceptional adaptability to diverse ecological environments. However, the scarcity of genetic resources for chukar has hindered research into its adaptive evolution and molecular breeding. In this study, we have sequenced and assembled a high-quality, phased chukar genome that consists of 31 pairs of relatively complete diploid chromosomes. Our BUSCO analysis reported a high completeness score of 96.8% and 96.5%, with respect to universal single-copy orthologs and a low duplication rate (0.3% and 0.5%) for two assemblies. Through resequencing and population genomic analyses of six subspecies, we have curated invaluable genotype data that underscores the adaptive evolution of chukar in response to both arid and high-altitude environments. These data will significantly contribute to research on how chukars adaptively evolve to cope with desertification and alpine climates.


Asunto(s)
Galliformes , Genoma , Animales , Galliformes/genética , Genotipo
16.
Environ Pollut ; 344: 123368, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246217

RESUMEN

Nitrophenols have received extensive attention due to their strong light-absorbing ability in the near-ultraviolet-visible region, which could be influenced by the atmospheric processes of nitrophenols. However, our knowledge and understanding of the formation and evolution of nitrophenols are still in the nascent stages. In the present study, the mixing states of four mononitrophenol particles (i.e., nitrophenol, methynitrophenol, nitrocatechol, and methoxynitrophenol), and one nitropolycyclic aromatic hydrocarbon particles (i.e., nitronaphthol (NN)) were investigated using a single-particle aerosol mass spectrometer (SPAMS) in November 2019 in Qingdao, China. The results showed, for the first time, that mononitrophenols and NN exhibit different mixing states and diurnal variations. Four mononitrophenols were internally mixed well with each other, and with organic acids, nitrates, potassium, and naphthalene. The diurnal variation in the number fraction of mononitrophenols presented two peaks at 07:00 to 09:00 and 18:00 to 20:00, and a valley at noon. Atmospheric environmental conditions, including NO2, O3, relative humidity, and temperature, can significantly influence the diurnal variation of mononitrophenols. Multiple linear regression and random forest regression models revealed that the main factors controlling the diurnal variation of mononitrophenols were photochemical reactions during the day and aqueous-phase reactions during the night. Unlike mononitrophenols, about 62-83% of NN were internally mixed with [NH4]+ and [H(NO3)2]-, but not with organic acids and potassium. The diurnal variation of NN was also different from that of mononitrophenols, generally increased from 17:00 to 10:00 and then rapidly decreaed from 11:00 to 16:00. These results imply that NN may have sources and atmospheric processes that are different from mononitrophenols. We speculate that this is mostly controlled by photochemical reactions and mixing with [NH4]+, which may influence the diurnal variation of NN in the ambient particles; however, this requires further confirmation. These findings extend our current understanding of the atmospheric formation and evolution of nitrophenols.


Asunto(s)
Contaminantes Atmosféricos , Nitrofenoles , Potasio , Ritmo Circadiano , Antifúngicos , China , Polvo , Aerosoles , Monitoreo del Ambiente , Material Particulado , Estaciones del Año
17.
Toxicol Appl Pharmacol ; 483: 116839, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38290667

RESUMEN

Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.


Asunto(s)
Abietanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas , Proteínas de Unión al GTP rho/farmacología , Proliferación Celular , Carcinoma Hepatocelular/tratamiento farmacológico , Citoesqueleto , Citoesqueleto de Actina , Línea Celular Tumoral , Apoptosis
18.
Nurse Educ Pract ; 75: 103882, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266566

RESUMEN

AIM: This study aims to explore the influence of emotion regulation on empathic ability among undergraduate nursing students, as well as the mediating role of emotional intelligence and self-consistency congruence. DESIGN: A cross-sectional study was employed to examine the relationship between the emotion regulation and empathic ability in Chinese nursing students. METHODS: A total of 761 undergraduate nursing students were surveyed using the Interpersonal Reactivity Index (Chinese version), the Gross Emotion Regulation Questionnaire, Wang and Law's Emotional Intelligence Scale and the Self-Harmony Scale. RESULTS: There was a significant positive correlation between emotion regulation, empathic ability and self-harmony. Significant positive correlations were also found between emotion regulation, empathic ability and emotional intelligence. Mediation analysis revealed that self-harmony and emotional intelligence partially mediated the predictive relationship between emotion regulation and empathic ability, with self-harmony showing a more significant mediating effect. CONCLUSION: The findings suggest that emotion regulation among undergraduate nursing students indirectly influences their empathic ability through parallel mediating effects of self-harmony and emotional intelligence.


Asunto(s)
Bachillerato en Enfermería , Regulación Emocional , Estudiantes de Enfermería , Humanos , Estudiantes de Enfermería/psicología , Estudios Transversales , Inteligencia Emocional
19.
Biochem Biophys Res Commun ; 690: 149256, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992525

RESUMEN

14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.


Asunto(s)
Proteínas 14-3-3 , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/metabolismo , Inmunidad de la Planta , Ralstonia solanacearum/fisiología , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo
20.
Heliyon ; 9(11): e22138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045158

RESUMEN

The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...