Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 1539-1556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406603

RESUMEN

Purpose: Persistent Infections and inflammation are associated with impaired wound healing in diabetic patients. There is a pressing demand for innovative antimicrobial strategies to address infections arising from antibiotic-resistant bacteria. Polymer-modified gold nanoparticles (AuNPs) show broad-spectrum antibacterial properties and significant biocompatibility. This study investigated the antibacterial and wound healing efficacy of hydrogel dressings conjugated with chitosan-AuNPs in diabetic model rats. Methods: Chitosan (CS)-functionalized gold nanoparticles (CS-AuNPs) were incorporated into hydrogel dressings (Gel/CS-AuNPs), which were formulated through the chemical cross-linking of gelatin with sodium alginate (SA). The basic characteristics of Gel/CS-AuNPs were analyzed by TEM, SEM, XRD, and UV-visible spectra. Rheological, swelling, degradation, and adhesive properties of Gel/CS-AuNPs were also determined. In vitro anti-bactericidal effects of the Gel/CS-AuNPs were analyzed with E. coli, S. aureus, and MRSA. In vitro biocompatibility of the Gel/CS-AuNPs was evaluated using NIH3T3 cells. The in vivo antibacterial and wound healing efficacy of the Gel/CS-AuNPs was analyzed in the diabetic wound model rats. Histological and immunofluorescence staining were performed to determine the status of angiogenesis, epithelization, inflammation response, and collagen deposition. Results: Gel/CS-AuNPs demonstrated significant high biodegradability, water absorption bactericidal, and biocompatibility, and slight adhesiveness. Gel/CS-AuNPs exhibited pronounced antibacterial efficacy against gram-negative, gram-positive, and MRSA in a CS-AuNPs-dose-dependent manner. In the diabetic wound model rats, Gel/CS-AuNPs effectively killed MRSA, reduced inflammation, and promoted angiogenesis and collagen deposition and remodeling at the wound site. As a result, Gel/CS-AuNPs expedited the recovery process for infected diabetic wounds. Among the hydrogels with different CS-AuNPs concentrations, Gel/CS-Au25 with 25% CS-AuNPs showed the best bactericidal and wound healing performance. Conclusion: Gel/CS-AuNPs significantly improve the healing of MRSA-infected diabetic wounds in the rat model. Therefore, Gel/CS-AuNPs show great promise for the treatment of diabetic infection wound healing.


Asunto(s)
Quitosano , Diabetes Mellitus , Nanopartículas del Metal , Humanos , Ratones , Ratas , Animales , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Oro/química , Staphylococcus aureus/metabolismo , Hidrogeles/química , Escherichia coli , Células 3T3 NIH , Nanopartículas del Metal/química , Cicatrización de Heridas , Colágeno/metabolismo , Bacterias/metabolismo , Inflamación
2.
Front Cell Infect Microbiol ; 13: 1142029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033476

RESUMEN

Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.


Asunto(s)
Antifúngicos , Micosis , Humanos , Antifúngicos/uso terapéutico , Polímeros/uso terapéutico , Micosis/diagnóstico , Micosis/tratamiento farmacológico , Micosis/prevención & control , Hongos
3.
Huan Jing Ke Xue ; 44(2): 1174-1180, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775639

RESUMEN

Under the "Carbon Peak, Carbon Neutral" goal, the systematic evaluation of the carbon emission equivalent (CO2eq) and its compositions of the typical A2O process has important guiding significance for the low-carbon operation of most municipal sewage plants in China. Based on the operational data on the first municipal sewage plant of Jiaozuo in 2020 and the methods presented in "2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, " a systematic evaluation of the CO2eq of the typical A2O process was established, including direct emissions that were built on the Arrhenius model introducing the water temperature factor and indirect emissions from the three aspects of electricity consumption, agent addition, and sludge transportation. The results showed that the daily emission intensities of CH4 and N2O were (115±56) kg·d-1 and (30±18) kg·d-1, respectively. Additionally, indirect carbon emissions from electricity consumption and agent addition accounted for 48.4% and 51.3% in the biochemical treatment section, respectively. In 2020, CO2eq amounts of total research plant and per unit sewage were 2.17×104 t and (0.63±0.07) kg·m-3, respectively. The magnitude of the proportion of different carbon emission compositions was as follows:sewage electricity (36.5%)>sewage agent (26.6%)>N2O direct (15.4%)>sludge agent (9.6%)>sludge electricity (6.7%)>CH4 direct (4.9%)>sludge transportation (0.3%). System import/export fluxes of carbon and nitrogen elements were calculated, followed by the carbon to nitrogen mass ratio in the sewage plant. Direct carbon emission characteristics of CH4 and N2O and their influencing factors were discussed, respectively. Based on the balance theory of carbon and nitrogen elements in the system, it is proposed that the selective introduction of industrial wastewater may become an important reference measure for the low-carbon operation of municipal sewage plants in the future.


Asunto(s)
Gases de Efecto Invernadero , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Carbono , Aguas Residuales , Gases de Efecto Invernadero/análisis , Nitrógeno , Óxido Nitroso/análisis , Metano/análisis
4.
Ecotoxicol Environ Saf ; 205: 111357, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979799

RESUMEN

Quantification and evaluation of the spatial distribution and the primary factors that affect Escherichia coli (E. coli) distribution in soils is important to assess soil pollution and potential contamination of groundwater. However, little information is available on distribution of E. coli in deep soil layers. To analyze the spatial distribution and factors affecting E. coli over a 0-400 cm soil profile, soil samples were collected from two land use type in the sewage irrigation fields. The primary factors dominating the spatial distribution of E. coli were quantified by the model of principal component analysis with multiple linear regression (PCA-MLR). The results indicated that the number of E. coli under cropland decreased greatly with soil depth. The average number of E. coli over the 0-400 cm profile under forestland was 49 × 104 colony-forming unit/g (cfu/g), which was significantly higher than that under cropland (20 × 104 cfu/g). For forestland and cropland, the average number of E. coli at depths of 300-400 cm decreased by 85% and 88%, respectively, compared to that at depths of 0-100 cm. The presence of E. coli at the depths of 300-400 cm was at high level (forestland: 3 × 104 cfu/g; cropland: 2 × 104 cfu/g) for the potential risks of shallow groundwater. The PCA-MLR model estimated that the factors of soil organism, soil salt and land type use contributed 28%, 29% and 43%, respectively, to the distribution of E. coli. According to the Monte Carlo simulation, the average number of E. coli over the 0-400 cm profile was 46 ± 17 × 104 cfu/g in the sewage irrigated area, and the interval distribution with a probability of 95% varied between 14 × 104 cfu/g and 78 × 104 cfu/g. The findings of this study are useful for understanding negative effects of sewage irrigation on pathogens in deep soil and are critical to assess the potential risks of groundwater pollution.


Asunto(s)
Riego Agrícola , Escherichia coli/crecimiento & desarrollo , Microbiología del Suelo , Eliminación de Residuos Líquidos , China , Bosques , Agua Subterránea , Aguas del Alcantarillado/análisis , Suelo , Contaminantes del Suelo/análisis
5.
J Contam Hydrol ; 192: 50-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27356192

RESUMEN

Adsorption kinetics and transformation process of ammonium ion (NH4(+)) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4(+) onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20°C to 60°C in order to determine the transport parameters and transformation mechanism of NH4(+) in the studied matrix. The results showed that the adsorption process of NH4(+) onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4(+) onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014cm/h, only a little part of NH4(+) could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20°C to 60°C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen.


Asunto(s)
Amoníaco/química , Manantiales de Aguas Termales/química , Hidrología/métodos , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Nitratos/química , Nitrificación , Temperatura
6.
Huan Jing Ke Xue ; 32(3): 632-40, 2011 Mar.
Artículo en Chino | MEDLINE | ID: mdl-21634157

RESUMEN

Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that, affected by the river and pond water, the highest point of groundwater temperature is near the pond in spring, and near the river in winter; and regulation for water and sediment at the Xiaolangdi Reservoir also affects groundwater temperature in riparian zone, which reaches its maximum at 100 m far from the river bank. There exists a strong zone of nitrification area at 50 m from the river bank, and in this area, the groundwater pH value is lower by 0.2 to 0.4 unit than that of the other regions, with great annual varieties. The turbidity of groundwater is affected by irrigation, which is more obvious than other indicators of groundwater. The turbidity of groundwater and river water increase rapidly during the early phase of flood retreat, and slope stability of river bank is the initial impact of the soil erosion of river bank. Conductivity, chloride and sulfate data show that the range of 50-200 m in riparian wetland is a very important salt accumulation zone, and the width of salt accumulation zone changes with seasons, and this area is also a very important zone of sulfur reduction. The quality of groundwater at 200 m from the river bank is also significantly affected by floods. Physical and chemical indicators of water change strongly in this area. The result indicates that there is a very close relationship between groundwater and surface water, and it is the typical land and water ecotone between groundwater of riparian zone and the river. Rational protection for this region is critical for the conservation of water quality both in the river and groundwater.


Asunto(s)
Inundaciones , Agua Dulce/análisis , Movimientos del Agua , Contaminación del Agua/análisis , Humedales , Fenómenos Químicos , China , Agua Dulce/química , Ríos/química
7.
Huan Jing Ke Xue ; 32(2): 362-7, 2011 Feb.
Artículo en Chino | MEDLINE | ID: mdl-21528555

RESUMEN

The development and degradation processes of riparian wetlands are significantly affected by river hydrological processes. By observing the variation of groundwater levels in riparian wetlands at the Kouma section of the Yellow River Wetland, especially that during the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between groundwater level in riparian wetlands and flood water level in the river is studied. The results show that groundwater level in riparian wetlands is significantly affected by water level in the river investigated. There is a negative exponential relationship between groundwater level and the distance between wells and river. The correlation coefficient shows the maximum (R2 > 0.98) during the period of regulation for water and sediment. Affected by the cultivation system in the flooding area, distance between monitoring wells and river bank, water level in the river variation of groundwater level in the wetland changed greatly. In artificial wetland, which is far from the river, the inter-annual variation in groundwater levels show a " (see symbol)" shape, while in the farmland, which is close to the river, the inter-annual variation of groundwater levels show a big peak. The groundwater level 400 m from the river is affected by flood events obviously, that in the area which is less than 200 m from the river is significantly affected by flood events in the area which is especially less than that in the area that is less than 100 m from the river, the groundwater level is affected by flood events intensively. The result indicated that there was a very close relationship between groundwater and surface water, and it was the hydrological ecotone between groundwater of riparian wetlands and the river. It is very important that rational protection for this region (very important for the area which is less than 100 m from the river, important for the area that is between 100 m and 200 m from the river) is critical for the conservation of water quality in the river and groundwater quality.


Asunto(s)
Inundaciones , Agua Dulce/análisis , Movimientos del Agua , Abastecimiento de Agua/análisis , Humedales , China , Agua Dulce/química , Ríos , Contaminación del Agua/prevención & control
8.
J Environ Sci (China) ; 21(7): 933-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19862959

RESUMEN

Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K(15)NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.


Asunto(s)
Agricultura , Contaminación Ambiental/análisis , Nitrógeno/análisis , Humedales , China , Ecosistema , Monitoreo del Ambiente , Ríos
9.
Biomed Environ Sci ; 18(1): 36-42, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15861776

RESUMEN

OBJECTIVE: To explore the way to induce mesenchymal stem cells (MSCs) to differentiate into dopaminergic neurons in vitro. METHODS: MSCs were obtained from rat bone marrow, cultured and passaged. MSCs used in this experiment had multipotency, which was indirectly proved by being induced to differentiate into chondrocytes and adipocytes. MSCs were cultured in medium containing 0.5 mmol/L IBMX for 2 days. Then the medium was replaced with induction medium, which contained GDNF, IL-1beta, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments. The surface markers of the differentiated neurons, such as NSE, nestin, MAP-2a, b and TH were detected by immunocytochemistry and Western blot after MSCs were cultured in induction medium for 7 days and 15 days. RESULTS: MSCs differentiated into neural progenitors and expressed nestin after MSCs were incubated with medium containing IBMX for 2 d. After the medium was replaced with induction medium containing many inducing agents, MSCs differentiated into neuron-like cells and dopaminergic neuron-like cells and expressed NSE, MAP-2a, b and TH. The percentage of NSE-positive cells, MAP-2a, b-positive cells and TH-positive cells was 30.032 +/- 2.489%, 41.580 +/- 5.101% and 34.958 +/- 5.534%, respectively after MSCs were induced in medium containing GDNF, IL-1beta, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments for 15 days. CONCLUSION: MSCs can differentiate into dopaminergic neuron-like cells and are a new cell source for the treatment of neurodegeneration diseases and have a great potential for wide application.


Asunto(s)
Células de la Médula Ósea , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Neuronas/citología , Adipocitos/citología , Animales , Western Blotting , Carboxilesterasa/análisis , Células Cultivadas , Condrocitos/citología , Medios de Cultivo Condicionados , Dopamina/análisis , Proteínas de Filamentos Intermediarios/análisis , Mesencéfalo/citología , Proteínas del Tejido Nervioso/análisis , Nestina , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/análisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA