Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.162
Filtrar
1.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693119

RESUMEN

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Asunto(s)
Fusobacterium nucleatum , Herpesvirus Humano 1 , Viroterapia Oncolítica , Virus Oncolíticos , Proteínas de Unión al ARN , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/genética , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Animales , Humanos , Viroterapia Oncolítica/métodos , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/inmunología , Línea Celular Tumoral , Fusobacterium nucleatum/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Femenino , Inmunidad Innata , Ratones Endogámicos BALB C
2.
Plant Divers ; 46(3): 309-320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798724

RESUMEN

Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.

4.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725843

RESUMEN

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Inhibidores mTOR , Proteína Proto-Oncogénica c-ets-1 , Humanos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Ratones Desnudos
5.
Vet Microbiol ; 293: 110100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718527

RESUMEN

Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.


Asunto(s)
Coinfección , Infecciones por Coronavirus , Intestinos , Kobuvirus , Linfocitos , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/patogenicidad , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/virología , Coinfección/virología , Coinfección/veterinaria , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Linfocitos/virología , Kobuvirus/patogenicidad , Kobuvirus/genética , Intestinos/virología , Diarrea/virología , Diarrea/veterinaria , Replicación Viral , Gastroenteritis/virología , Gastroenteritis/veterinaria , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/virología
6.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2689-2698, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812169

RESUMEN

This study aims to prepare co-loaded indocyanine green(ICG) and elemene(ELE) nano-emulsion(NE) in situ gel(ICG-ELE-NE-gel) and evaluate its physicochemical properties and antitumor activity in vitro. ICG-ELE-NE-gel was prepared by aqueous phase titration and cold solution methods, followed by characterization of the morphology, particle size, corrosion, and photothermal conversion characteristics. The human breast cancer MCF-7 cells were taken as the model, combined with 808 nm laser irradia-tion. Cell inhibition rate test and cell uptake test were performed. ICG-ELE-NE was spherical and uniform in size. The average particle size and Zeta potential were(85.61±0.35) nm and(-21.4±0.6) mV, respectively. The encapsulation efficiency and drug loading rate were 98.51%±0.39% and 10.96%±0.24%, respectively. ICG-ELE-NE-gel had a good photothermal conversion effect and good photothermal stability. The dissolution of ICG-ELE-NE-gel had both temperature and pH-responsive characteristics. Compared with free ELE, ICG-ELE-NE-gel combined with near-infrared light irradiation significantly enhanced the inhibitory effect on MCF-7 cells and could be uptaken in large amounts by MCF-7 cells. ICG-ELE-NE-gel was successfully prepared, and its antitumor activity was enhanced after 808 nm laser irradiation.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Emulsiones , Verde de Indocianina , Humanos , Verde de Indocianina/química , Células MCF-7 , Emulsiones/química , Proliferación Celular/efectos de los fármacos , Femenino , Tamaño de la Partícula , Geles/química , Nanopartículas/química , Composición de Medicamentos/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Portadores de Fármacos/química
7.
Lipids Health Dis ; 23(1): 157, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796440

RESUMEN

AIMS: About 20-40% patients with type 2 diabetes mellitus (T2DM) had an increased risk of developing diabetic nephropathy (DN). Dipeptidyl peptidase-4 inhibitors (DPP-4i) were recommended for treatment of T2DM, while the impact of DPP-4i on renal function remained unclear. This study aimed to explore the effect of DPP-4i on renal parameter of estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) in T2DM. METHODS: A systematic search was performed across PubMed, Embase and Cochrane Library. A fixed or random-effects model was used for quantitative synthesis according to the heterogeneity, which was assessed with I2 index. Sensitivity analysis and publication bias were performed with standard methods, respectively. RESULTS: A total of 17 randomized controlled trials were identified. Administration of DPP-4i produced no significant effect on eGFR (WMD, -0.92 mL/min/1.73m2, 95% CI, -2.04 to 0.19) in diabetic condition. DPP-4i produced a favorable effect on attenuating ACR (WMD, -2.76 mg/g, 95% CI, -5.23 to -0.29) in patients with T2DM. The pooled estimate was stable based on the sensitivity test. No publication bias was observed according to Begg's and Egger's tests. CONCLUSIONS: Treatment with DPP-4i preserved the renal parameter of eGFR in diabetic condition. Available evidences suggested that administration of DPP-4i produced a favorable effect on attenuating ACR in patients with T2DM. INTERNATIONAL PROSPECTIVE REGISTER FOR SYSTEMATIC REVIEW (PROSPERO) NUMBER: CRD.42020144642.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Tasa de Filtración Glomerular , Riñón , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Tasa de Filtración Glomerular/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/fisiopatología , Creatinina/orina , Creatinina/sangre
8.
Phys Chem Chem Phys ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804323

RESUMEN

In this study, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activity of ruthenium polyphthalocyanine axially modified with different aliphatic thiol groups, RuPPc-SR (SR = -SCH3, -SC2H5, -SC3H7, -SC4H9, -SC5H11, and -SC6H13), in an acidic medium were simulated using DFT. All -SR groups can effectively enhance the ORR and OER catalytic activities of RuPPc. The ORR and OER overpotentials of RuPPc-SC4H9 are 0.237 V and 0.436 V, respectively, which are far lower than those of RuPPc (0.960 V and 0.903 V). For RuPPc-SC4H9, the four C and S atoms of the -SC4H9 chain and Ru atom are coplanar, and thus, conjugate effects and inductive effects exist between the -SC4H9 chain and Ru atom. This makes the Ru atom exhibit the least positive Bader charge and smallest spin density, and the anti-bonding orbitals of dxz, dyz, and dz2 of the Ru atom shift below the Fermi level (Ef). This makes the adsorption strength of RuPPc-SC4H9 toward ORR and OER intermediates the weakest, which accelerates the reaction process, thus resulting in better ORR and OER catalytic activity. Therefore, the introduction of the aliphatic thiol groups might effectively improve the OER/ORR catalytic activity of RuPPc.

9.
Phys Rev Lett ; 132(19): 196402, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804933

RESUMEN

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications.

10.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646755

RESUMEN

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Asunto(s)
Hormigas , Bosques , Metano , Suelo , Clima Tropical , Metano/análisis , Metano/metabolismo , Animales , Suelo/química , China , Microbiología del Suelo , Estaciones del Año
11.
World J Clin Cases ; 12(9): 1569-1577, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38576746

RESUMEN

BACKGROUND: Ovarian cancer is one of the most common malignant tumors in female reproductive system in the world, and the choice of its treatment is very important for the survival rate and prognosis of patients. Traditional open surgery is the main treatment for ovarian cancer, but it has the disadvantages of big trauma and slow recovery. With the continuous development of minimally invasive technology, minimally invasive laparoscopic surgery under general anesthesia has been gradually applied to the treatment of ovarian cancer because of its advantages of less trauma and quick recovery. However, the efficacy and safety of minimally invasive laparoscopic surgery under general anesthesia in the treatment of ovarian cancer are still controversial. AIM: To explore the efficacy and safety of general anesthesia minimally invasive surgery in the treatment of ovarian cancer. METHODS: The clinical data of 90 patients with early ovarian cancer in our hospital were analyzed retrospectively. According to the different surgical treatment methods, patients were divided into study group and control group (45 cases in each group). The study group received minimally invasive laparoscopic surgery under general anesthesia for ovarian cancer, while the control group received traditional open surgery for ovarian cancer. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30), clinical efficacy and safety of the two groups were compared. RESULTS: The intraoperative blood loss, length of hospital stay, postoperative gas evacuation time, and postoperative EORTC QLQ-C30 score of the study group were significantly better than those of the control group (P < 0.05). The incidence of postoperative complications in the study group was significantly lower than in the control group (P < 0.05). The two groups had no significant differences in the preoperative adrenocorticotropic hormone (ACTH), androstenedione (AD), cortisol (Cor), cluster of differentiation 3 positive (CD3+), and cluster of differentiation 4 positive (CD4+) indexes (P > 0.05). In contrast, postoperatively, the study group's ACTH, AD, and Cor indexes were lower, and the CD3+ and CD4+ indexes were higher than those in the control group (P < 0.05). CONCLUSION: Minimally invasive laparoscopic surgery under general anesthesia in patients with early ovarian cancer can significantly improve the efficacy and safety, improve the short-term prognosis and quality of life of patients, and is worth popularizing.

12.
Nat Commun ; 15(1): 3254, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627395

RESUMEN

The past century has witnessed a large number of reports on the Z/E isomerization of alkenes. However, the vast majority of them are still limited to the isomerization of di- and tri-substituted alkenes. The stereospecific Z/E isomerization of tetrasubstituted alkenes remains to be an underdeveloped area, thus lacking in a stereodivergent synthesis of axially chiral alkenes. Herein we report the atroposelective synthesis of tetrasubstituted alkene analogues by asymmetric allylic substitution-isomerization, followed by their Z/E isomerization via triplet energy transfer photocatalysis. In this regard, the stereodivergent synthesis of axially chiral N-vinylquinolinones is achieved efficiently. Mechanistic studies indicate that the benzylic radical generation and distribution are two key factors for preserving the enantioselectivities of axially chiral compounds.

13.
RSC Adv ; 14(16): 11258-11265, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38590347

RESUMEN

Synthetic polymer nanoparticles (NPs) with biomimetic properties are ideally suited for different biomedical applications such as drug delivery and direct therapy. However, bulk synthetic approaches can suffer from poor reproducibility and scalability when precise size control or multi-step procedures are required. Herein, we report an integrated microfluidic chip for the synthesis of polymer NPs. The chip could sequentially perform homopolymer synthesis and subsequent crosslinking into NPs without intermediate purification. This was made possible by fabrication of the chip with a fluorinated elastomer and incorporation of two microfluidic mixers. The first was a long channel with passive mixing features for the aqueous RAFT synthesis of stimuli-responsive polymers in ambient conditions. The polymers were then directly fed into a hydrodynamic flow focusing (HFF) junction that rapidly mixed them with a crosslinker solution to produce NPs. Compared to microfluidic systems made of PDMS or glass, our chip had better compatibility and facile fabrication. The polymers were synthesized with high monomer conversion and the NP size was found to be influenced by the flow rate ratio between the crosslinker solution and polymer solution. This allowed for the size to be predictably controlled by careful adjustment of the fluid flow rates. The size of the NPs and their stimuli-responses were studied using DLS and SEM imaging. This microfluidic chip design can potentially streamline and provide some automation for the bottom-up synthesis of polymer NPs while offering on-demand size control.

14.
Curr Med Chem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38676480

RESUMEN

BACKGROUND: Ischemic stroke, the most common type of cerebrovascular accident, is a major cause of severe disability among adults worldwide. Although there has been progress in interventions for ischemic stroke in the past decades, there is no effective treatment to prevent brain damage in acute ischemic stroke. Therefore, it is urgent to develop novel neuroprotective agents with a wide therapeutic time window to provide a better prognosis for ischemic stroke patients. OBJECTIVE: The current study aimed to synthesize novel derivatives with substituent cinnamide scaffolds, evaluate biological activity, and obtain neuroprotective agents. METHODS: The target compounds were synthesized using classical methods of medicinal chemistry. The neuroprotective effects in vitro against Glu-induced neurotoxicity injury were evaluated in PC12 cells by MTT assay. The cell apoptosis was analyzed by flow cytometer. The proteins were detected by western blotting. The neuroprotective activities in vivo were determined in two in vivo models of global and focal cerebral ischemia. RESULTS: Among the title compounds, 9t, 9u, 9y, and 9z exhibited good neuroprotection in vivo and in vitro, which were selected and further studied to determine their mechanism of action. 9t, 9u, 9y and 9z protected PC12 cells against glutamate-induced apoptosis in a dose-dependent manner via caspase-3 pathway. Moreover, the four compounds significantly reduced brain infarct area and exhibited excellent neuroprotective activities in the in vivo MCAO model. CONCLUSION: Compounds 9t, 9u, 9y, and 9z, as potent neuroprotective agents with anti- neurotoxicity activity in vitro and anticerebral infarction efficacy in vivo, might serve as a useful molecular tool for further physiology and pathophysiology function studies, leading to potential clinical therapeutic agents for ischemic injury.

15.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
16.
Sci Total Environ ; 930: 172581, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641112

RESUMEN

The comprehensive analysis of multiple biological communities is essential for assessing diversities within mangrove ecosystems, yet such studies are infrequent. Environmental DNA (eDNA) facilitates the simultaneous exploration of organisms across various levels within a single ecosystem. In this investigation, 16S rRNA, cytochrome C oxidase I (COI), and Mito-fish primers were employed to characterize the microbiome, eukaryotic plankton, and fish communities, along with their intricate interactions, across 24 samples from three Chinese mangrove reservoirs. The resulting dataset encompasses 3779 taxonomic groups (genus level), spanning from the microbiome to vertebrates. Diversity analysis unveiled a higher level of stability in the microbiome community compared to plankton, underscoring the superior site-specificity of plankton. The association analysis revealed that biodiversity was primarily affected by temperature, turbidity, and fluorescent dissolved organic matter (fDOM). Notably, the physicochemical factors, turbidity, and fDOM had a more pronounced impact on the microbiome than on plankton, explaining their distinct sensitivities to site-specific conditions. Network analysis constructed 15 biological interaction subnetworks representing various community connections. The most connected genera in each subnetwork, highly responsive to different environmental factors, could serve as potential indicators of distinct ecosystem states. In summary, our findings represent the first comparison of the response sensitivities of different communities and the construction of their interaction networks in mangrove environments. These results contribute valuable insights into marine ecosystem dynamics and the role of environmental factors in shaping biodiversity.


Asunto(s)
Microbiota , Plancton , ARN Ribosómico 16S , Humedales , Plancton/genética , ADN Ambiental , China , Monitoreo del Ambiente , Biodiversidad , Animales , Ecosistema
17.
ACS Chem Biol ; 19(5): 1040-1044, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38620022

RESUMEN

Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 µM) than the linear form (39 ± 6 µM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Péptidos Cíclicos/química , Cisteína/química , Proteínas de Unión a Maltosa/metabolismo , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Ciclización , Péptidos/química , Secuencia de Aminoácidos
18.
Cancer Sci ; 115(6): 2067-2081, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566528

RESUMEN

Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.


Asunto(s)
Proliferación Celular , Ferroptosis , Neoplasias de la Mama Triple Negativas , Ferroptosis/genética , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Línea Celular Tumoral , Ratones , Animales , Proliferación Celular/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Transición Epitelial-Mesenquimal/genética , Pronóstico , Paclitaxel/farmacología , Transducción de Señal , Subtipo EP3 de Receptores de Prostaglandina E
19.
Angew Chem Int Ed Engl ; : e202407095, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658318

RESUMEN

Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.

20.
J Biochem Mol Toxicol ; 38(4): e23689, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613465

RESUMEN

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 µM Pazopanib, respectively. Cellular senescence was measured using senescence-associated ß-galactosidase (SA-ß-Gal) staining. Western blot analysis and real-time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2-related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad- Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.


Asunto(s)
Carcinoma de Células Renales , Indazoles , Neoplasias Renales , Pirimidinas , Sulfonamidas , Telomerasa , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Factor 2 Relacionado con NF-E2 , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias Renales/tratamiento farmacológico , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA