Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci China Life Sci ; 66(1): 51-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322324

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is one of the most common inherited cardiomyopathies, characterized by progressive fibrofatty replacement in the myocardium. However, the cellular origin of cardiac adipocytes in ACM remains largely unknown. Unraveling the cellular source of cardiac adipocytes in ACM would elucidate the underlying pathological process and provide a potential target for therapy. Herein, we generated an ACM mouse model by inactivating desmosomal gene desmoplakin in cardiomyocytes; and examined the adipogenic fates of several cell types in the disease model. The results showed that SOX9+, PDGFRa+, and PDGFRb+ mesenchymal cells, but not cardiomyocytes or smooth muscle cells, contribute to the intramyocardial adipocytes in the ACM model. Mechanistically, Bmp4 was highly expressed in the ACM mouse heart and functionally promoted cardiac mesenchymal-to-adipose transition in vitro.


Asunto(s)
Cardiomiopatías , Corazón , Ratones , Animales , Miocardio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/fisiología , Obesidad/metabolismo
2.
Oxid Med Cell Longev ; 2022: 4824699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193063

RESUMEN

Connexin43 (Cx43)-mediated gap junctions are vital in maintaining corneal endothelium homeostasis. Tumor necrosis factor-alpha (TNF-α) is among the most important inflammatory factors which cause corneal endothelial dysfunction in various eye diseases. However, the effect of TNF-α on Cx43-mediated gap junctions of the corneal endothelium remains undefined. In the current research, we determined the effect of TNF-α on gap junction intercellular communication (GJIC) in rabbit corneal endothelium. To evaluate alterations of GJIC, if any, we treated ex vivo cultured rabbit corneal endothelium with different concentrations of TNF-α (2-20 ng/ml). The localization of Cx43 was analyzed by immunostaining, while RT-qPCR and western blot were used to profile the expression of Cx43 and zonula occludens-1 (ZO-1). The association between ZO-1 and Cx43 was evaluated using immunoprecipitation and double staining. GJIC activity was determined by the scrap loading and dye transfer assay (SLDT). Our data demonstrated that a high concentration of TNF-α (10 ng/ml and 20 ng/ml) disrupts the Cx43 mediated gap junction distribution in rabbit corneal endothelium and suppresses the expression of Cx43 protein. Furthermore, rabbit corneal endothelial GJIC was inhibited due to the decreased association between the ZO-1 and Cx43 proteins. Current results demonstrate that TNF-α inhibits corneal endothelial GJIC via decreasing the association between ZO-1 and Cx43, disrupting the distribution of Cx43, and downregulating the expression of Cx43 protein. This study offers a new theoretical foundation for diagnosing and treating corneal endothelial cell decompensation induced by elevated TNF-α in various eye diseases.


Asunto(s)
Conexina 43 , Factor de Necrosis Tumoral alfa , Animales , Comunicación Celular/fisiología , Células Cultivadas , Uniones Comunicantes/metabolismo , Conejos , Factor de Necrosis Tumoral alfa/metabolismo
3.
Adv Mater ; 34(19): e2201411, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35307880

RESUMEN

The development of minimally invasive cardiac patches, either as hemostatic dressing or treating myocardial infarction, is of clinical significance but remains a major challenge. Designing such patches often requires simultaneous consideration of several material attributes, including bioabsorption, non-toxicity, matching the mechanic properties of heart tissues, and working efficiently in wet and dynamic environments. Using genetically engineered multi-domain proteins, a printed bi-layer proteinaceous hydrogel patch for heart failure treatments is reported. The intrinsic self-healing nature of hydrogel materials physically enables seamless interfacial integration of two disparate hydrogel layers and functionally endows the cardiac patches with the combinatorial advantages of each layer. Leveraging the biocompatibility, structural stability, and tunable drug release properties of the bi-layer hydrogel, promising effects of hemostasis, fibrosis reduction, and heart function recovery on mice is demonstrated with two myocardium damage models. Moreover, this proteinaceous patch is proved biodegradable in vivo without any additive inflammations. In conclusion, this work introduces a promising new type of minimally invasive patch based on genetically modified double-layer protein gel for treating heart-related injuries or diseases.


Asunto(s)
Hemostáticos , Infarto del Miocardio , Animales , Vendajes , Hidrogeles/química , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio
4.
Transgenic Res ; 30(6): 821-835, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34542814

RESUMEN

Gene deletion by the Cre-Loxp system has facilitated functional studies of many critical genes in mice, offering important insights and allowing deeper understanding on the mechanisms underlying organ development and diseases, such as heart development and diseases. In this study, we generated a Myh6-Cre knockin mouse model by inserting the IRES-Cre-wpre-polyA cassette between the translational stop codon and the 3' untranslated region of the endogenous Myh6 gene. By crossing knockin mice with the Rosa26 reporter lines, we found that Myh6-Cre targeted cardiomyocytes at the embryonic and postnatal stages. In addition, we were able to inactivate the desmosome gene Desmoplakin (Dsp) by breeding Myh6-Cre mice with a conditional Dspflox knockout mouse line, which resulted in embryonic lethality during the mid-term pregnancy. These results suggest that the new Myh6-Cre mouse line can serve as a robust tool to dissect the distinct roles of genes involved in heart development and function.


Asunto(s)
Integrasas , Miocitos Cardíacos , Animales , Eliminación de Gen , Integrasas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
5.
Cell Rep ; 34(5): 108697, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535029

RESUMEN

Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Miocardio/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Miocardio/citología , Pericitos/citología , Pericitos/metabolismo
7.
Circ Res ; 127(10): 1221-1232, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32791884

RESUMEN

RATIONALE: Endothelial cells are thought to emerge de novo from the mesoderm to form the entire circulatory system. Recently, erythro-myeloid progenitors (EMPs) have been proposed to be another remarkable developmental origin for blood vessels in multiple organs, including the hindbrain, liver, lung, and heart, as demonstrated by lineage tracing studies using different genetic tools. These observations challenge the current consensus that intraembryonic vessels are thought to expand solely by the proliferation of preexisting endothelial cells. Resolution of this controversy over the developmental origin of endothelial cells is crucial for developing future therapeutics for vessel-dependent organ repair and regeneration. OBJECTIVE: To examine the contribution of EMPs to intraembryonic endothelial cells. METHODS AND RESULTS: We first used a transgenic mouse expressing a tamoxifen-inducible Mer-iCre fusion protein driven by the Csf1r (colony stimulating factor 1 receptor) promoter. Genetic lineage tracing based on Csf1r-Mer-iCre-Mer showed no contribution of EMPs to brain endothelial cells identified by several markers. We also generated a knock-in mouse line by inserting an internal ribosome entry site-iCre cassette into the 3' untranslated region of Csf1r gene to further investigate the cellular fates of EMPs. Similarly, we did not find any Csf1r-ires-iCre traced endothelial cells in brain, liver, lung, or heart in development either. Additionally, we found that Kit (KIT proto-oncogene receptor tyrosine kinase) was expressed not only in EMPs but also in embryonic hindbrain endothelial cells. Therefore, Kit promoter-driven recombinase, such as Kit-CreER, is a flawed tool for lineage tracing when examining the contribution of EMPs to hindbrain endothelial cells. We also traced CD45 (protein tyrosine phosphatase receptor type C; Ptprc)+ circulating EMPs and did not find any CD45 lineage-derived endothelial cells during development. CONCLUSIONS: Our study suggested that EMPs are not the origin of intraembryonic endothelial cells.


Asunto(s)
Linaje de la Célula , Células Endoteliales/citología , Células Precursoras Eritroides/citología , Animales , Endotelio Vascular/citología , Endotelio Vascular/embriología , Corazón Fetal/citología , Hígado/citología , Hígado/embriología , Pulmón/citología , Pulmón/embriología , Macrófagos/citología , Mesodermo/citología , Ratones , Rombencéfalo/citología , Rombencéfalo/embriología
9.
J Biol Chem ; 294(22): 8894-8906, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31010826

RESUMEN

Early embryonic endocardium undergoes endothelial-to-mesenchymal transition to form cardiac cushion mesenchymal cells (MCs). Embryonic endocardium also gives rise to fibroblasts, intramyocardial adipocytes, and coronary mural cells, including smooth muscle cells and pericytes, in development. Whether endocardial cells directly differentiate into fibroblasts, coronary mural cells, and adipocytes or indirectly via an intermediate stage of endocardial-derived cushion MCs remains unknown. In addition to endocardium, epicardium and neural crest also contribute to cardiac cushion MCs. Given the developmental heterogeneity of cushion MCs and the lack of specific markers for endocardial-derived cushion MCs, conventional genetic lineage tracing utilizing Cre recombinase driven by one specific regulatory element is not sufficient to examine the fates of endocardial-derived cushion MCs. Intersectional genetic targeting approaches, which combine regulatory elements from two or more genes, have been employed to increase the specificity of cell targeting. Here, we developed a dual-recombinase intersectional targeting approach using Nfatc1-Dre, Sox9-CreER, and Cre/Dre double-dependent reporter Ai66 to specifically label endocardial-derived cushion MCs. Taking advantage of intersectional lineage tracing, we found that a subset of cardiac cells including fibroblasts, coronary mural cells, and intramyocardial adipocytes in adult hearts were derived from endocardial-derived cushion MCs. Our study suggests that embryonic endocardium contributes to cushion MCs first, and then endocardial-derived cushion MCs migrate into myocardium and differentiate into fibroblasts, coronary mural cells, and adipocytes in development. Understanding developmental origins of cardiac cell lineages will provide us more insights into cardiac development, regeneration, and diseases.


Asunto(s)
Adipocitos/citología , Linaje de la Célula , Endocardio/citología , Células Endoteliales/citología , Fibroblastos/citología , Células Madre Mesenquimatosas/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Miocardio/metabolismo , Miocardio/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
10.
Sci Rep ; 7(1): 6951, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761172

RESUMEN

Acute ocular hypertension (AOH) frequently compromises corneal endothelial cell (CEC) function in clinical practice. This type of stress induces corneal oedema and a decrease in the corneal endothelial cell density (ECD). The anterior chamber of the right eye of Sprague-Dawley rats was irrigated with Balanced Salt Solution (BSS) for two hours, and the left eye served as a control to determine the time-dependent effects of AOH on endothelial cell morphology and function. The average intraocular pressure (IOP) increased to 82.6 ± 2.3 mmHg (normal range: 10.2 ± 0.4 mmHg) during anterior irrigation. Very soon after initiating irrigation, corneal oedema became evident and the cornea exhibited a significant increase in permeability to FITC-dextran. The peripheral ECD was significantly reduced, and the morphology of CECs became irregular and multiform. The structures of the zonula occludens-1 (ZO-1) and F-actin were severely disrupted. In addtion, Na,K-ATPase exhibited a dispersed expression pattern. Two days after irrigation, obvious CEC proliferation was observed, the ECD recovered to a normal level, and F-actin was dispersed throughout the cytoplasm. Seven days later, the CEC structure and function were nearly normalized. Based on the results obtained using this model, an acute IOP crisis exerts transient deleterious effects on CEC structure and function in rats.


Asunto(s)
Actinas/química , Endotelio Corneal/patología , Hipertensión Ocular/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteína de la Zonula Occludens-1/química , Actinas/metabolismo , Animales , Recuento de Células , Células Cultivadas , Dextranos/administración & dosificación , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Corneal/citología , Endotelio Corneal/metabolismo , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/análogos & derivados , Hipertensión Ocular/etiología , Hipertensión Ocular/metabolismo , Permeabilidad , Ratas , Ratas Sprague-Dawley , Proteína de la Zonula Occludens-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA