Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(13): 3996-4009, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37596343

RESUMEN

PURPOSE: Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. METHODS: A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [18F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan-Meier method and compared with the observed PFS probability. RESULTS: Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785-0.851), 0.752 (95% CI: 0.638-0.865), and 0.717 (95% CI: 0.641-0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822-0.895), 0.769 (95% CI: 0.642-0.896), and 0.730 (95% CI: 0.634-0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. CONCLUSION: Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.


Asunto(s)
Aprendizaje Profundo , Neoplasias Nasofaríngeas , Humanos , Pronóstico , Nomogramas , Carcinoma Nasofaríngeo/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Neoplasias Nasofaríngeas/diagnóstico por imagen , Estudios Retrospectivos
2.
Front Oncol ; 12: 899351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965589

RESUMEN

Objective: Deep learning-based radiomics (DLR) has achieved great success in medical image analysis and has been considered a replacement for conventional radiomics that relies on handcrafted features. In this study, we aimed to explore the capability of DLR for the prediction of 5-year progression-free survival (PFS) in advanced nasopharyngeal carcinoma (NPC) using pretreatment PET/CT images. Methods: A total of 257 patients (170/87 patients in internal/external cohorts) with advanced NPC (TNM stage III or IVa) were enrolled. We developed an end-to-end multi-modality DLR model, in which a 3D convolutional neural network was optimized to extract deep features from pretreatment PET/CT images and predict the probability of 5-year PFS. The TNM stage, as a high-level clinical feature, could be integrated into our DLR model to further improve the prognostic performance. For a comparison between conventional radiomics and DLR, 1,456 handcrafted features were extracted, and optimal conventional radiomics methods were selected from 54 cross-combinations of six feature selection methods and nine classification methods. In addition, risk group stratification was performed with clinical signature, conventional radiomics signature, and DLR signature. Results: Our multi-modality DLR model using both PET and CT achieved higher prognostic performance (area under the receiver operating characteristic curve (AUC) = 0.842 ± 0.034 and 0.823 ± 0.012 for the internal and external cohorts) than the optimal conventional radiomics method (AUC = 0.796 ± 0.033 and 0.782 ± 0.012). Furthermore, the multi-modality DLR model outperformed single-modality DLR models using only PET (AUC = 0.818 ± 0.029 and 0.796 ± 0.009) or only CT (AUC = 0.657 ± 0.055 and 0.645 ± 0.021). For risk group stratification, the conventional radiomics signature and DLR signature enabled significant difference between the high- and low-risk patient groups in both the internal and external cohorts (p < 0.001), while the clinical signature failed in the external cohort (p = 0.177). Conclusion: Our study identified potential prognostic tools for survival prediction in advanced NPC, which suggests that DLR could provide complementary values to the current TNM staging.

3.
Neuroimage ; 259: 119444, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792292

RESUMEN

Deformable image registration is fundamental for many medical image analyses. A key obstacle for accurate image registration lies in image appearance variations such as the variations in texture, intensities, and noise. These variations are readily apparent in medical images, especially in brain images where registration is frequently used. Recently, deep learning-based registration methods (DLRs), using deep neural networks, have shown computational efficiency that is several orders of magnitude faster than traditional optimization-based registration methods (ORs). DLRs rely on a globally optimized network that is trained with a set of training samples to achieve faster registration. DLRs tend, however, to disregard the target-pair-specific optimization inherent in ORs and thus have degraded adaptability to variations in testing samples. This limitation is severe for registering medical images with large appearance variations, especially since few existing DLRs explicitly take into account appearance variations. In this study, we propose an Appearance Adjustment Network (AAN) to enhance the adaptability of DLRs to appearance variations. Our AAN, when integrated into a DLR, provides appearance transformations to reduce the appearance variations during registration. In addition, we propose an anatomy-constrained loss function through which our AAN generates anatomy-preserving transformations. Our AAN has been purposely designed to be readily inserted into a wide range of DLRs and can be trained cooperatively in an unsupervised and end-to-end manner. We evaluated our AAN with three state-of-the-art DLRs - Voxelmorph (VM), Diffeomorphic Voxelmorph (DifVM), and Laplacian Pyramid Image Registration Network (LapIRN) - on three well-established public datasets of 3D brain magnetic resonance imaging (MRI) - IBSR18, Mindboggle101, and LPBA40. The results show that our AAN consistently improved existing DLRs and outperformed state-of-the-art ORs on registration accuracy, while adding a fractional computational load to existing DLRs.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
4.
IEEE J Biomed Health Inform ; 26(9): 4497-4507, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35696469

RESUMEN

Nasopharyngeal Carcinoma (NPC) is a malignant epithelial cancer arising from the nasopharynx. Survival prediction is a major concern for NPC patients, as it provides early prognostic information to plan treatments. Recently, deep survival models based on deep learning have demonstrated the potential to outperform traditional radiomics-based survival prediction models. Deep survival models usually use image patches covering the whole target regions (e.g., nasopharynx for NPC) or containing only segmented tumor regions as the input. However, the models using the whole target regions will also include non-relevant background information, while the models using segmented tumor regions will disregard potentially prognostic information existing out of primary tumors (e.g., local lymph node metastasis and adjacent tissue invasion). In this study, we propose a 3D end-to-end Deep Multi-Task Survival model (DeepMTS) for joint survival prediction and tumor segmentation in advanced NPC from pretreatment PET/CT. Our novelty is the introduction of a hard-sharing segmentation backbone to guide the extraction of local features related to the primary tumors, which reduces the interference from non-relevant background information. In addition, we also introduce a cascaded survival network to capture the prognostic information existing out of primary tumors and further leverage the global tumor information (e.g., tumor size, shape, and locations) derived from the segmentation backbone. Our experiments with two clinical datasets demonstrate that our DeepMTS can consistently outperform traditional radiomics-based survival prediction models and existing deep survival models.


Asunto(s)
Aprendizaje Profundo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA