Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730933

RESUMEN

High-nickel ternary materials are currently the most promising lithium battery cathode materials due to their development and application potential. Nevertheless, these materials encounter challenges like cation mixing, lattice oxygen loss, interfacial reactions, and microcracks. These issues are exacerbated at high voltages, compromising their cyclic stability and safety. In this study, we successfully prepared Nb5+-doped high-nickel ternary cathode materials via a high-temperature solid-phase method. We investigated the impact of Nb5+ doping on the microstructure and electrochemical properties of LiNi0.88Co0.05Mn0.07O2 ternary cathode materials by varying the amount of Nb2O5 added. The experimental results suggest that Nb5+ doping does not alter the crystal structure but modifies the particle morphology, yielding radially distributed, elongated, rod-like structures. This morphology effectively mitigates the anisotropic volume changes during cycling, thereby bolstering the material's cyclic stability. The material exhibits a discharge capacity of 224.4 mAh g-1 at 0.1C and 200.3 mAh g-1 at 1C, within a voltage range of 2.7 V-4.5 V. Following 100 cycles at 1C, the capacity retention rate maintains a high level of 92.9%, highlighting the material's remarkable capacity retention and cyclic stability under high-voltage conditions. The enhancement of cyclic stability is primarily due to the synergistic effects caused by Nb5+ doping. Nb5+ modifies the particle morphology, thereby mitigating the formation of microcracks. The formation of high-energy Nb-O bonds prevents oxygen precipitation at high voltages, minimizes the irreversibility of the H2-H3 phase transition, and thereby enhances the stability of the composite material at high voltages.

2.
RSC Adv ; 14(17): 12030-12037, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38623294

RESUMEN

Ti3C2 MXenes are emerging 2D materials and have attracted increasing attention in sodium metal anode fabrication because of their high conductivity, multifunctional groups and excellent mechanical performances. However, the severe self-restacking of Ti3C2 MXenes is not conducive to dispersing Na+ and limits the function of regulating sodium deposition. Herein, an alkalized MXene/carbon nanotube (CNT) composite (named A-M-C) is introduced to regulate Na deposition behavior, which consists of Na3Ti5O12 microspheres, Ti3C2 MXene nanosheets and CNTs. Ti3C2 MXene nanosheets with large interlayer spaces and "sodiophilic" functional groups can provide abundant active sites for uniform nucleation and deposition of Na. Plenty of nanosheets are grown on the surface of the microsphere, thereby reducing the local current density, which can guide initial Na nucleation and promote Na dendrite-free growth. Furthermore, CNTs increase the electrical conductivity of the composite and achieve fast Na+ transport, improving the cycling stability of Na metal batteries. As a result, at a capacity of 1 mA h cm-2, the A-M-C electrode achieves a high average coulombic efficiency (CE) of 99.9% after 300 cycles at 2 mA cm-2. The symmetric cells of A-M-C/Na provide a long cycling life of more than 1400 h at 1 mA cm-2 with a minimal overpotential of 19 mV at an areal capacity of 1 mA h cm-2. The A-M-C/Na//NVP@C full cell presents a high coulombic efficiency of 98% with 100 mA g-1 in the first cycle. The strategy in this work provides new insights into fabricating novel MXene-based anode materials for dendrite-free sodium deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...