Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2364-2377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38015705

RESUMEN

Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.

2.
J Mot Behav ; 55(3): 262-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653194

RESUMEN

Background: the effect of acute exercise on cognition covers almost all stages of information processing, but few studies have focused on visual awareness. Reports on the appearance of faint speed-changes in the perception of stimuli were used as an index for visual awareness. Visual awareness was assessed after exercise or rest. Aside from the detection of speed-changes, speed-change discrimination was added as an index of perception. Results: the results showed that reports on the appearance of faint speed-changes were affected by acute aerobic exercise. The d' index was higher after exercise. The hit rate for speed-change detection was marginally significantly higher after exercise than after the sedentary test condition. Analysis of the results obtained for the discrimination task showed that discrimination speed was boosted only when subjects were aware of the speed-change. Importantly, neither false alarm rate nor response bias was affected by exercise. Conclusions: acute moderate- to vigorous-intensity aerobic exercise improved subjects' awareness of speed changes. In addition, there was a perceptual advantage due to exercise.


Asunto(s)
Cognición , Percepción Visual , Humanos , Estado de Conciencia , Ejercicio Físico
3.
IEEE Trans Vis Comput Graph ; 27(8): 3350-3360, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32092010

RESUMEN

Light fields capture both the spatial and angular rays, thus enabling free-viewpoint rendering and custom selection of the focal plane. Scientists can interactively explore pre-recorded microscopic light fields of organs, microbes, and neurons using virtual reality headsets. However, rendering high-resolution light fields at interactive frame rates requires a very high rate of texture sampling, which is challenging as the resolutions of light fields and displays continue to increase. In this article, we present an efficient algorithm to visualize 4D light fields with 3D-kernel foveated rendering (3D-KFR). The 3D-KFR scheme coupled with eye-tracking has the potential to accelerate the rendering of 4D depth-cued light fields dramatically. We have developed a perceptual model for foveated light fields by extending the KFR for the rendering of 3D meshes. On datasets of high-resolution microscopic light fields, we observe 3.47×-7.28× speedup in light field rendering with minimal perceptual loss of detail. We envision that 3D-KFR will reconcile the mutually conflicting goals of visual fidelity and rendering speed for interactive visualization of light fields.

4.
IEEE Trans Vis Comput Graph ; 26(5): 1972-1980, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32086213

RESUMEN

Optimizing rendering performance is critical for a wide variety of virtual reality (VR) applications. Foveated rendering is emerging as an indispensable technique for reconciling interactive frame rates with ever-higher head-mounted display resolutions. Here, we present a simple yet effective technique for further reducing the cost of foveated rendering by leveraging ocular dominance - the tendency of the human visual system to prefer scene perception from one eye over the other. Our new approach, eye-dominance-guided foveated rendering (EFR), renders the scene at a lower foveation level (with higher detail) for the dominant eye than the non-dominant eye. Compared with traditional foveated rendering, EFR can be expected to provide superior rendering performance while preserving the same level of perceived visual quality.


Asunto(s)
Gráficos por Computador , Predominio Ocular/fisiología , Tecnología de Seguimiento Ocular , Realidad Virtual , Adolescente , Adulto , Algoritmos , Femenino , Fijación Ocular/fisiología , Humanos , Masculino , Gafas Inteligentes , Interfaz Usuario-Computador , Percepción Visual/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...