Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eco Environ Health ; 3(1): 11-20, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169841

RESUMEN

The ambient air quality standard (AAQS) is a vital policy instrument for protecting the environment and human health. Hainan Province is at the forefront of China's efforts to protect its ecological environment, with an official goal to achieve world-leading air quality by 2035. However, neither the national AAQS nor the World Health Organization guideline offers sufficient guidance for improving air quality in Hainan because Hainan has well met the former while the latter is excessively stringent. Consequently, the establishment of Hainan's local AAQS becomes imperative. Nonetheless, research regarding the development of local AAQS is scarce, especially in comparatively more polluted countries such as China. The relatively high background values and significant interannual fluctuations in air pollutant concentrations in Hainan present challenges in the development of local AAQS. Our research proposes a world-class local AAQS of Hainan Province by reviewing the AAQS in major countries or regions worldwide, analyzing the influence of different statistical forms, and carefully evaluating the attainability of the standard. In the proposed AAQS, the annual mean concentration limit for PM2.5, the annual 95th percentile of daily maximum 8-h mean (MDA8) concentration limit for O3, and the peak season concentration limit for O3 are set at 10, 120, and 85 µg/m3, respectively. Our study indicates that, with effective control policies, Hainan is projected to achieve compliance with the new standard by 2035. The implementation of the local AAQS is estimated to avoid 1,526 (1,253-1,789) and 259 (132-501) premature deaths attributable to long-term exposure to PM2.5 and O3 in Hainan in 2035, respectively.

2.
Front Vet Sci ; 10: 1204706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808112

RESUMEN

The development of the four stomachs of yak is closely related to its health and performance, however the underlying molecular mechanisms are largely unknown. Here, we systematically analyzed mRNAs of four stomachs in five growth time points [0 day, 20 days, 60 days, 15 months and 3 years (adult)] of yaks. Overall, the expression patterns of DEmRNAs were unique at 0 d, similar at 20 d and 60 d, and similar at 15 m and adult in four stomachs. The expression pattern in abomasum was markedly different from that in rumen, reticulum and omasum. Short Time-series Expression Miner (STEM) analysis demonstrated that multi-model spectra are drastically enriched over time in four stomachs. All the identified mRNAs in rumen, reticulum, omasum and abomasum were classified into 6, 4, 7, and 5 cluster profiles, respectively. Modules 9, 38, and 41 were the most significant three colored modules. By weighted gene co-expression network analysis (WGCNA), a total of 5,486 genes were categorized into 10 modules. CCKBR, KCNQ1, FER1L6, and A4GNT were the hub genes of the turquoise module, and PAK6, TRIM29, ADGRF4, TGM1, and TMEM79 were the hub genes of the blue module. Furthermore, functional KEGG enrichment analysis suggested that the turquoise module was involved in gastric acid secretion, sphingolipid metabolism, ether lipid metabolism, etc., and the blue module was enriched in pancreatic secretion, pantothenate and CoA biosynthesis, and starch and sucrose metabolism, etc. Our study aims to lay a molecular basis for the study of the physiological functions of rumen, reticulum, omasum and abomasum in yaks. It can further elucidate the important roles of these mRNAs in regulation of growth, development and metabolism in yaks, and to provide a theoretical basis for age-appropriate weaning and supplementary feeding in yaks.

3.
J Environ Manage ; 345: 118645, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499414

RESUMEN

Clarifying the driving forces of O3 and fine particulate matter (PM2.5) co-pollution is important to perform their synergistic control. This work investigated the co-pollution of O3 and PM2.5 in Hainan Province using an observation-based model and explainable machine learning. The O3 and PM2.5 pollution that occurs in winter is affected by the wintertime East Asian Monsoon. The O3 formation shifts from a NOx-limited regime with a low O3 production rate (PO3) in the non-pollution season to a transition regime with a high PO3 in the pollution season due to an increase in NOx concentrations. Increased O3 and atmospheric oxidation capacity promote the conversion from gas-phase precursors to aerosols. Meanwhile, the high concentration of particulate nitrate favors HONO formation via photolysis, in turn facilitating O3 production. Machine learning reveals that NOx promotes O3 and PM2.5 co-pollution during the pollution period. The PO3 shows an upward trend at the observation site from 2018 to 2022 due to the inappropriate reduction of volatile organic compounds (VOCs) and NOx in the upwind areas. Our results suggest that a deep reduction of NOx should benefit both O3 and PM2.5 pollution control in Hainan and bring new insights into improving air quality in other regions of China in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis
4.
PLoS One ; 18(6): e0285699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267400

RESUMEN

The aim of this article is to explore the impact of housing investment on household entrepreneurship. Using survey data from China and employing a Probit model, we examine three aspects of housing status and innovatively subdivide household entrepreneurship into agricultural entrepreneurship and business entrepreneurship. The results show that households with higher housing investment are less likely to become agricultural entrepreneurs, but more likely to start a new business. Households with full-owned housing enjoy a higher likelihood to become business entrepreneurs. However, other ownerships have no relation with the choice of entrepreneurship. More housing loans discourage entrepreneurial activities. One exception is that bank loan raises the chance of being agricultural entrepreneurs. Households who build their own houses have a higher agricultural entrepreneurship. Buying market price houses encourages households to be business entrepreneurs. Low-price house and inherited house prevent households from being business entrepreneurs.


Asunto(s)
Emprendimiento , Vivienda , Comercio , Empleo , China
5.
Dose Response ; 21(1): 15593258231155789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798636

RESUMEN

The use of doxorubicin (DOX) as an anthraquinone antineoplastic agent is limited due to its cardiotoxicity. Our previous study suggested that low-dose radiation (LDR) could mitigate the cardiotoxicity induced by DOX via suppressing oxidative stress and cell apoptosis. However, the molecular targets and protective mechanism of LDR are not understood. In the present study, we sought to investigate the mechanisms underlying LDR's cardioprotection. Balb/c mice were randomly divided into four groups: Control group (no treatment), DOX group, LDR group (75 mGy), and LDR-72 h-DOX group (LDR pretreatment followed by intraperitoneal injection of DOX). Electron microscopy, PCR, and Western blot analyses indicated that LDR pretreatment mitigated changes in mitochondrial morphology caused by DOX, upregulated activity of mitochondrial complexes, and restored ATP levels in cardiomyocytes that were decreased by DOX. Whole genome microarray and PCR analyses showed that mitochondrial-related genes were altered by LDR pretreatment. Thus, our study showed that LDR can protect cardiomyocytes against DOX through improving mitochondrial function and increasing ATP production. This research could inform DOX chemotherapy strategies and provide new insight into the molecule mechanisms underlying the cardioprotective effects of LDR.

6.
Front Physiol ; 13: 1039029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439248

RESUMEN

Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.

7.
Genes (Basel) ; 13(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36360263

RESUMEN

Single nucleotide polymorphism was widely used to perform genetic and evolution research in pigs. However, little is known about the effect of copy number variation (CNV) on characteristics in pigs. This study performed a genome-wide comparison of CNVs between Wannan black pigs (WBP) and Asian wild boars (AWB), using whole genome resequencing data. By using Manta, we detected in total 28,720 CNVs that covered approximately 1.98% of the pig genome length. We identified 288 selected CNVs (top 1%) by performing Fst statistics. Functional enrichment analyses for genes located in selected CNVs were found to be muscle related (NDN, TMOD4, SFRP1, and SMYD3), reproduction related (GJA1, CYP26B1, WNT5A, SRD5A2, PTPN11, SPEF2, and CCNB1), residual feed intake (RFI) related (MAP3K5), and ear size related (WIF1). This study provides essential information on selected CNVs in Wannan black pigs for further research on the genetic basis of the complex phenotypic and provides essential information for direction in the protection and utilization of Wannan black pig.


Asunto(s)
Variaciones en el Número de Copia de ADN , Domesticación , Porcinos/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Genoma , Análisis de Secuencia de ADN , China
8.
Life Sci ; 302: 120644, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588864

RESUMEN

Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.


Asunto(s)
Envejecimiento , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Envejecimiento/fisiología , Senescencia Celular/fisiología , Estrés Oxidativo , Enfermedad Crónica
9.
Sheng Li Xue Bao ; 74(1): 110-116, 2022 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-35199131

RESUMEN

Hypertension is one of the strongest risk factors for cardiovascular diseases, cerebral stroke, and kidney failure. Lifestyle and nutrition are important factors that modulate blood pressure. Hypertension can be controlled by increasing physical activity, decreasing alcohol and sodium intake, and stopping tobacco smoking. Chronic kidney disease patients often have increased blood pressure, which indicates that kidney is one of the major organs responsible for blood pressure homeostasis. The decrease of renal sodium reabsorption and increase of diuresis induced by high potassium intake is critical for the blood pressure reduction. The beneficial effect of a high potassium diet on hypertension could be explained by decreased salt reabsorption by sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT). In DCT cells, NCC activity is controlled by with-no-lysine kinases (WNKs) and its down-stream target kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1). The kinase activity of WNKs is inhibited by intracellular chloride ([Cl-]i) and WNK4 is known to be the major WNK positively regulating NCC. Based on our previous studies, high potassium intake reduces the basolateral potassium conductance, decreases the negativity of DCT basolateral membrane (depolarization), and increases [Cl-]i. High [Cl-]i inhibits WNK4-SPAK/OSR1 pathway, and thereby decreases NCC phosphorylation. In this review, we discuss the role of DCT in the blood pressure regulation by dietary potassium intake, which is the mechanism that has been best dissected so far.


Asunto(s)
Túbulos Renales Distales , Proteínas Serina-Treonina Quinasas , Presión Sanguínea , Dieta , Humanos , Riñón/metabolismo , Túbulos Renales Distales/metabolismo , Fosforilación , Potasio/metabolismo , Potasio/farmacología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
10.
Animals (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611624

RESUMEN

Wanbei pig (WBP) is one of the indigenous pig resources in China and has many germplasm characteristics. However, research on its genome is lacking. To assess the genomic variation, population structure, and selection signatures, we resequenced 18 WBP for the first time and performed a comprehensive analysis with resequenced data of 10 Asian wild boars. In total, 590.03 Gb of data and approximately 41 million variants were obtained. Polymorphism level (θπ) ratio and genetic differentiation (fixation index)-based cross approaches were applied, and 539 regions, which harbored 176 genes, were selected. Functional analysis of the selected genes revealed that they were associated with lipid metabolism (SCP2, APOA1, APOA4, APOC3, CD36, BCL6, ADCY8), backfat thickness (PLAG1, CACNA2D1), muscle (MYOG), and reproduction (CABS1). Overall, our results provide a valuable resource for characterizing the uniqueness of WBP and a basis for future breeding.

11.
Materials (Basel) ; 14(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668143

RESUMEN

Tool wear is a major cause of accelerated tool failure during the milling of aluminum alloy. The periodically cutting force directly affect the cutting heat and tool wear due to the intermittent cutting characteristics of the milling process. The focus of this paper is to analyze the influence of the variation of cutting force on tool wear behavior. The change law of cutting force by cutting parameters was analyzed firstly. Secondly, the variation of the wear land width (VB) of tool flank face by the milling length was analyzed. Thirdly, the wear morphology and the energy dispersive spectrometer (EDS) results of tool rake face and flank face in different cutting parameters were observed by tungsten filament scanning electron microscope. Finally, considering the cutting force effect, the tool wear mechanism during high-speed milling of Aluminum-Alloy Die Castings 12 (ADC12, 12 means aluminum number 12) was analyzed. The cutting force in tangential direction is predominant during high-speed milling aluminum alloy, which decreases gradually with the increase of cutting speed but increases gradually with the feed rising. The adhesion-oxidation wear was main wear mechanism of tool rake face during high-speed milling. While adhesive wear was the main wear mechanism of the tool flank face during high-speed milling. It is found that the formation of adhesive wear is the process from particle adhesion to melting until the formation of adhesive layer, which related to the change of cutting force.

12.
Am J Physiol Renal Physiol ; 319(3): F414-F422, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32715760

RESUMEN

We used patch-clamp and Western blot analysis to test whether PGF2α stimulates the basolateral 10-pS Cl- channel and thiazide-sensitive Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) via a prostaglandin F receptor (FP-R). Single channel and whole cell recordings demonstrated that PGF2α stimulated the 10-pS Cl- channel in the DCT. The stimulatory effect of PGF2α on the Cl- channel was mimicked by a FP-R agonist, latanoprost, but was abrogated by blocking FP-R with AL8810. Also, the effect of PGF2α on the Cl- channel in the DCT was recapitulated by stimulating PKC but was blocked by inhibiting PKC. Furthermore, inhibition of p38 MAPK but not ERK blocked the effect of PGF2α on the 10-pS Cl- channel. Inhibition of NADPH oxidase also abrogated the stimulatory effect of PGF2α on the 10-pS Cl- channel, while the addition of 10 µM H2O2 mimicked the stimulatory effect of PGF2α on the 10-pS Cl- channel. Moreover, superoxide-related species may mediate the stimulatory effect of PGF2α on the 10-pS Cl- channel because the stimulatory effect of PGF2α and H2O2 was not additive. Western blot analysis showed that infusion of PGF2α in vivo not only increased the expression of FP-R but also increased the expression of total NCC and phosphorylated NCC. We conclude that PGF2α stimulates the basolateral 10-pS Cl- channel in the DCT by activating FP-R through PKC/p38 MAPK and NADPH oxidase-dependent pathways. The stimulatory effects of PGF2α on the Cl- channel and NCC may contribute to PGF2α-induced increases in NaCl reabsorption in the DCT.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Canales de Cloruro/metabolismo , Dinoprost/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Distales/metabolismo , Receptores de Droga/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Canales de Cloruro/genética , Femenino , Túbulos Renales Distales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitócicos/farmacología , Técnicas de Placa-Clamp , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptores de Droga/genética , Simportadores del Cloruro de Sodio/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Hypertension ; 75(2): 439-448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865783

RESUMEN

The inhibition of Type II angiotensin II receptor (AT2R) or BK2R (bradykinin type II receptor) stimulates basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT) and activates thiazide-sensitive NCC (Na-Cl cotransporter). The aim of the present study is to examine the role of AT2R and BK2R in mediating the effect of HK (high dietary K+) intake on the basolateral K+ channels, NCC, and renal K+ excretion. Feeding mice (male and female) with HK diet for overnight significantly decreased the basolateral K+ conductance, depolarized the DCT membrane, diminished the expression of pNCC (phosphorylated NCC) and tNCC (total NCC), and decreased thiazide-sensitive natriuresis. Overnight HK intake also increased the expression of cleaved ENaC-α and -γ subunits but had no effect on NKCC2 expression. Pretreatment of the mice (male and female) with PD123319 and HOE140 stimulated the expression of tNCC and pNCC, augmented hydrochlorothiazide-induced natriuresis, and increased the negativity of the DCT membrane. The deletion of Kir4.1 not only decreased the NCC activity but also abolished the stimulatory effect of PD123319 and HOE140 perfusion on NCC activity. Moreover, the effect of overnight HK loading on Kir4.1/Kir5.1 in the DCT and NCC expression/activity was compromised in the mice treated with AT2R/BK2R antagonists. Renal clearance study showed that inhibition of AT2R and BK2R impairs renal K+ excretion in response to overnight HK loading, and the mice pretreated with PD123319 and HOE140 were hyperkalemic during HK intake. We conclude that synergistic activation of AT2R and BK2R is required for the effect of overnight HK diet on Kir4.1/Kir5.1 in the DCT and NCC activity.


Asunto(s)
Hiperpotasemia/metabolismo , Túbulos Renales Distales/metabolismo , Potasio/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptores de Angiotensina/metabolismo , Animales , Transporte Biológico , Modelos Animales de Enfermedad , Femenino , Hiperpotasemia/patología , Immunoblotting , Túbulos Renales Distales/patología , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Bradiquinina B2/efectos de los fármacos , Receptores de Angiotensina/efectos de los fármacos
14.
Hypertension ; 73(1): 112-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30571558

RESUMEN

The stimulation of ß-adrenergic receptor increases thiazide-sensitive NaCl cotransporter (NCC), an effect contributing to salt-sensitive hypertension by sympathetic stimulation. We now test whether the stimulation of ß-adrenergic receptor-induced activation of NCC is achieved through activating basolateral Kir4.1 in the distal convoluted tubule (DCT). Application of norepinephrine increased the basolateral 40 pS K+ channel (Kir4.1/Kir5.1 heterotetramer) in the DCT. The stimulatory effect of norepinephrine on the K+ channel was mimicked by cAMP analogue but abolished by inhibiting PKA (protein kinase A). Also, the effect of norepinephrine on the K+ channel in the DCT was recapitulated by isoproterenol but not by α-adrenergic agonist and blocked by propranolol, suggesting that norepinephrine effect on the K+ channel was mediated by ß-adrenergic receptor. The whole-cell recording shows that norepinephrine and isoproterenol increased DCT K+ currents and shifted the K+ current ( IK) reversal potential to negative range (hyperpolarization). Continuous norepinephrine perfusion (7 days) increased DCT K+ currents, hyperpolarized IK reversal potential, and increased the expression of total NCC/phosphorylated NCC, but it had no significant effect on the expression of NKCC2 (type 2 Na-Cl-K cotransporter) and ENaC-α (epithelial Na channel-α subunit). Renal clearance study demonstrated that norepinephrine perfusion augmented thiazide-induced urinary Na+ excretion only in wild-type but not in kidney-specific Kir4.1 knockout mice, suggesting that Kir4.1 is required for mediating the effect of norepinephrine on NCC. However, norepinephrine perfusion did not affect urinary K+ excretion. We conclude that the stimulation of ß-adrenergic receptor activates the basolateral Kir4.1 in the DCT and that the activation of Kir4.1 is required for norepinephrine-induced stimulation of NCC.


Asunto(s)
Transporte Iónico , Isoproterenol/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Túbulos Renales Distales/efectos de los fármacos , Túbulos Renales Distales/metabolismo , Ratones , Ratones Noqueados , Norepinefrina/metabolismo , Canal Kir5.1
15.
Sheng Li Xue Bao ; 70(6): 600-606, 2018 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-30560268

RESUMEN

Basolateral inwardly-rectifying K+ channels (Kir) play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron. Kir4.1 and Kir4.1/Kir5.1 heterotetramer are abundantly expressed in the basolateral membrane of late thick ascending limb (TAL), distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD). Loss-of-function mutations in KCNJ10 cause EAST/SeSAME syndrome in humans associated with epilepsy, ataxia, sensorineural deafness and water-electrolyte metabolism imbalance, which is characterized by salt wasting, hypomagnesaemia, hypokalaemia and metabolic alkalosis. In contrast, mice lacking Kir5.1 have severe renal phenotype apart from hypokalaemia such as high chlorine metabolic acidosis and hypercalcinuria. The genetic knockout or functional inhibition of Kir4.1 suppresses Na-Cl cotransporter (NCC) expression and activity in the DCT. However, the downregulation of Kir4.1 increases epithelial Na+ channel (ENaC) expression in the collecting duct. Recently, factors regulating expression and activity of Kir4.1 and Kir4.1/Kir5.1 were identified, such as cell acidification, dopamine, insulin and insulin-like growth factor-1. The involved mechanisms include PKC, PI3K, Src family protein tyrosine kinases and WNK-SPAK signal transduction pathways. Here we review the progress of renal tubule basolateral Kir, and mainly discuss the function and regulation of Kir4.1 and Kir4.1/Kir5.1.


Asunto(s)
Túbulos Renales/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Membrana Celular , Humanos , Túbulos Renales Distales , Potenciales de la Membrana , Ratones , Canal Kir5.1
16.
Hypertension ; 72(2): 361-369, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915013

RESUMEN

Stimulation of BK2R (bradykinin [BK] B2 receptor) has been shown to increase renal Na+ excretion. The aim of the present study is to explore the role of BK2R in regulating Kir4.1 and NCC (NaCl cotransporter) in the distal convoluted tubule (DCT). Immunohistochemical studies demonstrated that BK2R was highly expressed in both apical and lateral membrane of Kir4.1-positive tubules, such as DCT. Patch-clamp experiments demonstrated that BK inhibited the basolateral 40-pS K+ channel (a Kir4.1/5.1 heterotetramer) in the DCT, and this effect was blocked by BK2R antagonist but not by BK1R (BK B1 receptor) antagonist. Whole-cell recordings also demonstrated that BK decreased the basolateral K+ conductance of the DCT and depolarized the membrane. Renal clearance experiments showed that BK increased urinary Na+ and K+ excretion. However, the BK-induced natriuretic effect was completely abolished in KS-Kir4.1 KO (kidney-specific conditional Kir4.1 knockout) mice, suggesting that Kir4.1 activity is required for BK-induced natriuresis. The continuous infusion of BK with osmotic pump for 3 days decreased the basolateral K+ conductance and the negativity of the DCT membrane. Western blot showed that infusion of BK decreased the expression of total NCC and phosphorylated NCC. Renal clearance experiments demonstrated that thiazide-induced natriuresis was blunted in the mice receiving BK infusion, suggesting that BK inhibited NCC function. Consequently, mice receiving BK infusion for 3 days were hypokalemic. We conclude that stimulation of BK2R inhibits NCC activity, increases urinary K+ excretion, and causes mice hypokalemia and that Kir4.1 is required for BK2R-mediated stimulation of urinary Na+ and K+ excretion.


Asunto(s)
Bradiquinina/farmacología , Túbulos Renales Distales/metabolismo , Natriuresis/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Sodio/orina , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Femenino , Inmunohistoquímica , Transporte Iónico , Túbulos Renales Distales/efectos de los fármacos , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Técnicas de Placa-Clamp
17.
Oncotarget ; 9(1): 332-345, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29416617

RESUMEN

This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.

18.
Dose Response ; 16(4): 1559325818813061, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622447

RESUMEN

We reported that low-dose radiation (LDR) alleviated cardiotoxicity of doxorubicin (DOX) via inhibiting myocardial cell apoptosis and oxidative stress in vivo. Here, we tested whether LDR could enhance chemotherapeutic effect of DOX and alleviate myocardial injury induced by DOX by observing cell proliferation, apoptosis, and metastasis of heterotopic tumor in vivo. Mice implanted with 4T1 breast carcinoma cells were given 7.5 mg/kg DOX or 0.9% NaCl solution 72 hours after LDR (0 or 75 mGy). The histology of tumor tissue was observed by hematoxylin and eosin staining, the apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, and the expression of Ki67, Bcl-2, Bax, cleaved caspase3, matrix metalloproteinase 2 (MMP2), MMP9, and CD34 was detected by Western blot. Expression of Ki67 and CD34 was also detected by immunohistochemistry. Results showed that cell proliferation of the breast tumor and protein expression of the metastasis-related molecules were significantly reduced and the apoptosis of tumor cells was significantly increased in the LDR + DOX-treated tumor-bearing mice. Pretreatment with LDR significantly prevented DOX-induced cardiotoxicity likely through preventing DOX-induced mitochondrial Bcl2/Bax dyshomeostasis-induced caspase-3 cleavage-dependent apoptosis. These results suggested that LDR not only enhances DOX antitumor effect but also reduces DOX cardiotoxicity, which may potentially overcome the limitation for DOX clinical usage.

19.
Biochim Biophys Acta ; 1852(11): 2554-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319417

RESUMEN

The renal phenotype of EAST syndrome, a disease caused by the loss-of-function-mutations of Kcnj10 (Kir4.1), is a reminiscence of Gitelman's syndrome characterized by the defective function in the distal convoluted tubule (DCT). The aim of the present study is to test whether antidiuretic hormone (vasopressin)-induced stimulation of the Na(+)-activated 80-150pS K(+) channel is responsible for compensating the lost function of Kcnj10 in the thick ascending limb (TAL) of subjects with EAST syndrome. Immunostaining and western blot showed that the expression of aquaporin 2 (AQP2) was significantly higher in Kcnj10(-/-) mice than those of WT littermates, suggesting that the disruption of Kcnj10 stimulates vasopressin response in the kidney. The role of vasopressin in stimulating the basolateral K(+) conductance of the TAL was strongly indicated by the finding that the application of arginine-vasopressin (AVP) hyperpolarized the membrane in the TAL of Kcnj10(-/-) mice. Application of AVP significantly stimulated the 80-150pS K(+) channel in the TAL and this effect was blocked by tolvaptan (V2 receptor antagonist) or by inhibiting PKA. Moreover, the water restriction for 24h significantly increased the probability of finding the 80-150pS K(+) channel and the K(+) channel open probability in the TAL. The application of a membrane permeable cAMP analog also mimicked the effect of AVP and activated this K(+) channel, suggesting that cAMP-PKA pathway stimulates the 80-150pS K(+) channels. The role of the basolateral K(+) conductance in maintaining transcellular Cl(-) transport is further suggested by the finding that the inhibition of basolateral K(+) channels significantly diminished the AVP-induced stimulation of the basolateral 10pS Cl(-) channels. We conclude that vasopressin stimulates the 80-150pS K(+) channel in the TAL via a cAMP-dependent mechanism. The vasopressin-induced stimulation of K(+) channels is responsible for compensating lost function of Kcnj10 thereby rescuing the basolateral K(+) conductance which is essential for the transport function in the TAL.

20.
Int J Biol Markers ; 30(3): e282-5, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26109362

RESUMEN

BACKGROUND: MicroRNA-21 (miR-21) has previously been demonstrated as a potential biomarker in diagnosis of various human tumors. This meta-analysis was performed to evaluate the possibility of miR-21 as a biomarker for early detection of lung cancer. METHODS: Relevant lung cancer-related miRNA microarray datasets were collected from the NCBI Gene Expression Omnibus (GEO) database and EBI ArrayExpress database up to February 2014. Quality control of the output data was estimated using Limma package and ExiMiR package in R. Standardized mean difference (SMD) with 95% confidence intervals (CIs) from selected datasets was pooled. Heterogeneity was assessed using Cochran's Q test and the I2 statistic, and a p value <0.0.05 or I2 >50% was defined as significant heterogeneity. Furthermore, sensitivity analysis was conducted to evaluate the stability of the pooled results. Four miRNA datasets (GSE24704, GSE17681, GSE27486 and GSE40738) from blood samples were selected, including 153 lung cancer patients and 109 healthy people. RESULTS: The pooled results generated by random-effects model revealed that no significant difference was observed between case and control groups (SMD = 0.58; 95% CI, -0.04 to 1.19; p = 0.07) with significant heterogeneity (p = 0.0032, I2 = 78.2%; p = 0.06). Sensitivity analysis indicated that the results of the meta-analysis were stable. CONCLUSIONS: MiR-21 expression levels in whole blood and peripheral blood cells did not show significant differences between lung cancer patients and healthy controls, and it might be ineffective to measure miR-21 expression to achieve an early diagnosis of lung cancer.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , MicroARNs/sangre , ARN Neoplásico/sangre , Biomarcadores de Tumor/sangre , Factores de Confusión Epidemiológicos , Conjuntos de Datos como Asunto/estadística & datos numéricos , Humanos , Neoplasias Pulmonares/sangre , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA