Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(18): 10339-10354, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682702

RESUMEN

The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 µM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Ratones Endogámicos C57BL , Platycodon , Saponinas , Transducción de Señal , Triterpenos , Animales , Saponinas/farmacología , Saponinas/química , Saponinas/administración & dosificación , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Triterpenos/farmacología , Triterpenos/química , Triterpenos/administración & dosificación , Masculino , Transducción de Señal/efectos de los fármacos , Platycodon/química , Humanos , Línea Celular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Glucosa/metabolismo
3.
Eur Heart J ; 44(29): 2763-2783, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279475

RESUMEN

AIMS: Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis. METHODS AND RESULTS: Immunostaining revealed eosinophil accumulation in human and mouse atherosclerotic lesions. Eosinophil deficiency in ΔdblGATA mice slowed atherogenesis with increased lesion smooth muscle cell (SMC) content and reduced calcification. This protection in ΔdblGATA mice was muted when mice received donor eosinophils from wild-type (WT), Il4-/-, and Il13-/- mice or mouse eosinophil-associated-ribonuclease-1 (mEar1), a murine homologue of ECP. Eosinophils or mEar1 but not interleukin (IL) 4 or IL13 increased the calcification of SMC from WT mice but not those from Runt-related transcription factor-2 (Runx2) knockout mice. Immunoblot analyses showed that eosinophils and mEar1 activated Smad-1/5/8 but did not affect Smad-2/3 activation or expression of bone morphogenetic protein receptors (BMPR-1A/1B/2) or transforming growth factor (TGF)-ß receptors (TGFBR1/2) in SMC from WT and Runx2 knockout mice. Immunoprecipitation showed that mEar1 formed immune complexes with BMPR-1A/1B but not TGFBR1/2. Immunofluorescence double-staining, ligand binding, and Scatchard plot analysis demonstrated that mEar1 bound to BMPR-1A and BMPR-1B with similar affinity. Likewise, human ECP and eosinophil-derived neurotoxin (EDN) also bound to BMPR-1A/1B on human vascular SMC and promoted SMC osteogenic differentiation. In a cohort of 5864 men from the Danish Cardiovascular Screening trial and its subpopulation of 394 participants, blood eosinophil counts and ECP levels correlated with the calcification scores of different arterial segments from coronary arteries to iliac arteries. CONCLUSION: Eosinophils release cationic proteins that can promote SMC calcification and atherogenesis using the BMPR-1A/1B-Smad-1/5/8-Runx2 signalling pathway.


Asunto(s)
Aterosclerosis , Calcificación Vascular , Masculino , Humanos , Animales , Ratones , Eosinófilos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Sanguíneas/análisis , Osteogénesis , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Interleucina-13/metabolismo , Proteínas en los Gránulos del Eosinófilo/metabolismo , Ribonucleasas/metabolismo , Aterosclerosis/metabolismo , Ratones Noqueados
4.
Environ Pollut ; 322: 121202, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736819

RESUMEN

The production and application of nanoplastics has been increased during decades, and the enterotoxicity caused by their bioaccumulation has attracted vast attention. Maltol was proved to exert a protective effect on gut damage induced by carbon tetrachloride and cisplatin, indicating its confrontation with nanoplastics-induced intestinal toxicity. To explore the ameliorative effects of maltol on polystyrene nanoplastics (PS)-mediated enterotoxicity and the underlying mechanism, the mice were exposed to PS (100 mg/kg), combining with or without the treatment of maltol treatment at 50 and 100 mg/kg. We found PS exposure caused intestinal barrier damage and enterocyte apoptosis, while lysosomal dysfunction and autophagic substrate degradation arrest in enterocytes of mice were also observed. In addition, PS exacerbated the disturbance of the intestinal microbial community, affected the abundance of lysosome and apoptosis-related bacterial genes, and decreased the number of known short-chain fatty acid (SCFA) producing bacteria. However, those alterations were improved by the maltol treatment. Maltol also protected the human intestinal Caco-2 cells from PS-induce damages. Mechanistic studies showed maltol promoted TFEB nuclear translocation through the AMPK/mTOR signaling pathway to restore lysosomal function and reduce autophagy dependent apoptosis. The findings in the present work might help to elucidate the potential molecular mechanisms of PS-induced enterotoxicity. For the first time to our knowledge, the protective effect of maltol on PS-induced intestinal injury was studied from multiple perspectives, which provided a potential therapeutic approach for diseases caused by environmental pollution.


Asunto(s)
Microbioma Gastrointestinal , Poliestirenos , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología , Células CACO-2 , Microplásticos/efectos adversos , Microplásticos/farmacología , Poliestirenos/efectos adversos , Poliestirenos/toxicidad , Serina-Treonina Quinasas TOR/metabolismo
5.
Adv Sci (Weinh) ; 10(7): e2206958, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592421

RESUMEN

Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.


Asunto(s)
Aneurisma de la Aorta Abdominal , Eosinófilos , Inmunidad Innata , Interleucina-5 , Linfocitos , Animales , Ratones , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/prevención & control , Eosinófilos/inmunología , Eosinófilos/patología , Inmunidad Innata/inmunología , Interleucina-13 , Linfocitos/inmunología , Interleucina-5/inmunología
6.
Cardiovasc Res ; 119(1): 195-212, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35394031

RESUMEN

AIMS: Blood eosinophil (EOS) counts and EOS cationic protein (ECP) levels associate positively with major cardiovascular disease (CVD) risk factors and prevalence. This study investigates the role of EOS in cardiac hypertrophy. METHODS AND RESULTS: A retrospective cross-section study of 644 consecutive inpatients with hypertension examined the association between blood EOS counts and cardiac hypertrophy. Pressure overload- and ß-adrenoreceptor agonist isoproterenol-induced cardiac hypertrophy was produced in EOS-deficient ΔdblGATA mice. This study revealed positive correlations between blood EOS counts and left ventricular (LV) mass and mass index in humans. ΔdblGATA mice showed exacerbated cardiac hypertrophy and dysfunction, with increased LV wall thickness, reduced LV internal diameter, and increased myocardial cell size, death, and fibrosis. Repopulation of EOS from wild-type (WT) mice, but not those from IL4-deficient mice ameliorated cardiac hypertrophy and cardiac dysfunctions. In ΔdblGATA and WT mice, administration of ECP mEar1 improved cardiac hypertrophy and function. Mechanistic studies demonstrated that EOS expression of IL4, IL13, and mEar1 was essential to control mouse cardiomyocyte hypertrophy and death and cardiac fibroblast TGF-ß signalling and fibrotic protein synthesis. The use of human cardiac cells yielded the same results. Human ECP, EOS-derived neurotoxin, human EOS, or murine recombinant mEar1 reduced human cardiomyocyte death and hypertrophy and human cardiac fibroblast TGF-ß signalling. CONCLUSION: Although blood EOS counts correlated positively with LV mass or LV mass index in humans, this study established a cardioprotective role for EOS IL4 and cationic proteins in cardiac hypertrophy and tested a therapeutic possibility of ECPs in this human CVD.


Asunto(s)
Eosinófilos , Hipertrofia Ventricular Izquierda , Ratones , Humanos , Animales , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/prevención & control , Eosinófilos/metabolismo , Estudios Retrospectivos , Interleucina-4/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control , Miocitos Cardíacos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis , Remodelación Ventricular
7.
Cardiovasc Res ; 119(4): 1046-1061, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36063432

RESUMEN

AIMS: Group 2 innate lymphoid cells (ILC2s) regulate adaptive and innate immunities. In mouse heart, production of myocardial infarction (MI) increased ILC2 accumulation, suggesting a role for ILC2 in cardiac dysfunction post-MI. METHODS AND RESULTS: We produced MI in ILC2-deficeint Rorafl/flIl7rCre/+ mice and in Icosfl-DTR-fl/+Cd4Cre/+ mice that allowed diphtheria toxin-induced ILC2 depletion. Genetic or induced deficiency of ILC2 in mice exacerbated cardiac dysfunction post-MI injury along with increased myocardial accumulation of neutrophils, CD11b+Ly6Chi monocytes, and CD4+ T cells but deficiency of eosinophils (EOS) and dendritic cells (DC). Post-MI hearts from genetic and induced ILC2-deficient mice contained many more apoptotic cells than those of control mice, and Rorafl/flIl7rCre/+ mice showed thinner and larger infarcts and more collagen-I depositions than the Il7rCre/+ mice only at early time points post-MI. Mechanistic studies revealed elevated blood IL5 in Il7rCre/+ mice at 1, 7, and 28 days post-MI. Such increase was blunted in Rorafl/flIl7rCre/+ mice. Administration of recombinant IL5 reversed EOS losses in Rorafl/flIl7rCre/+ mice, but IL5 did not correct the DC loss in these mice. Adoptive transfer of ILC2, EOS, or DC from wild-type mice, but not ILC2 from Il5-/- mice improved post-MI cardiac functions in Rorafl/flIl7rCre/+ recipient mice. EOS are known to protect cardiomyocytes from apoptosis. Here we showed that DC acted like EOS in blocking cardiomyocyte apoptosis. Yet, ILC2 or IL5 alone did not directly affect cardiomyocyte apoptosis or TGF-ß (transforming growth factor-ß)-induced cardiac fibroblast Smad signalling. CONCLUSION: This study revealed an indirect cardiac reparative role of ILC2 in post-MI hearts via the IL5, EOS, and DC mechanism.


Asunto(s)
Inmunidad Innata , Infarto del Miocardio , Ratones , Animales , Interleucina-5 , Eosinófilos , Linfocitos , Infarto del Miocardio/genética , Células Dendríticas , Ratones Endogámicos C57BL
8.
Theranostics ; 12(6): 2639-2657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401811

RESUMEN

Rationale: Macrophages are the frontline immune cells in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Angiotensin-converting enzyme 2 (ACE2) serves as the binding receptor to SARS-CoV-2 Spike glycoprotein for fusion and internalization into the human host cells. However, the mechanisms underlying SARS-CoV-2-elicited macrophage inflammatory responses remain elusive. Neutralizing SARS-CoV-2 by human ACE2 (hACE2) decoys has been proposed as a therapeutic approach to ameliorate SARS-CoV-2-stimulated inflammation. This study aims to investigate whether an engineered decoy receptor can abrogate SARS-CoV-2-induced macrophage inflammation. Methods: hACE2 was biotinylated to the surface of nano-liposomes (d = 100 nm) to generate Liposome-human ACE2 complex (Lipo-hACE2). Lentivirus expressing Spike protein (D614G) was also created as a pseudo-SARS-CoV-2 (Lenti-Spike). Liposome-hACE2 was used as a decoy receptor or competitive inhibitor to inhibit SARS-CoV-2 or Lenti-Spike-induced macrophage inflammation in vitro and in vivo. Results: Both SARS-CoV-2 and Lenti-Spike stimulated strong inflammatory responses by inducing the expression of key cytokine and chemokines, including IL-1ß, IL-6, TNFα, CCL-2, and CXCL-10, in murine and human macrophages in vitro, whereas Lipo-hACE2 decoy abolished these effects in macrophages. Furthermore, intravenous injection of Lenti-Spike led to increased macrophage and tissue inflammation in wild type mice, which was also abolished by Lipo-hACE2 treatment. Mechanistically, Spike protein stimulated macrophage inflammation by activating canonical NF-κB signaling. RNA sequencing analysis revealed that Lenti-Spike induced over 2,000 differentially expressed genes (DEGs) in murine macrophages, but deficiency of IκB kinase ß (IKKß), a key regulator for NF-κB activation, abrogated Lenti-Spike-elicited macrophage inflammatory responses. Conclusions: We demonstrated that the engineered Lipo-hACE2 acts as a molecular decoy to neutralize SARS-CoV-2 or Spike protein-induced inflammation in both murine and human macrophages, and activation of the canonical IKKß/NF-κB signaling is essential for SARS-CoV-2-elicited macrophage inflammatory responses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Animales , Humanos , Quinasa I-kappa B , Inflamación , Liposomas , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Cells ; 11(7)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406689

RESUMEN

Plastic-associated endocrine disrupting chemicals (EDCs) have been implicated in the etiology of cardiovascular disease (CVD) in humans, but the underlying mechanisms remain elusive. Dicyclohexyl phthalate (DCHP) is a widely used phthalate plasticizer; whether and how exposure to DCHP elicits adverse effects in vivo is mostly unknown. We previously reported that DCHP is a potent ligand of the pregnane X receptor (PXR) which acts as a xenobiotic sensor to regulate xenobiotic metabolism. PXR also functions in macrophages to regulate atherosclerosis development in animal models. In the current study, LDL receptor-deficient mice with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) and their control littermates (PXRF/FLDLR-/-) were used to determine the impact of DCHP exposure on macrophage function and atherosclerosis. Chronic exposure to DCHP significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of PXRF/FLDLR-/- mice by 65% and 77%, respectively. By contrast, DCHP did not affect atherosclerosis development in PXRΔMyeLDLR-/- mice. Exposure to DCHP led to elevated expression of the scavenger receptor CD36 in macrophages and increased macrophage form cell formation in PXRF/FLDLR-/- mice. Our findings provide potential mechanisms underlying phthalate-associated CVD risk and will ultimately stimulate further investigations and mitigation of the adverse effects of plastic-associated EDCs on CVD risk in humans.


Asunto(s)
Aterosclerosis , Disruptores Endocrinos , Receptor X de Pregnano , Animales , Aterosclerosis/metabolismo , Ratones , Ratones Noqueados , Ácidos Ftálicos , Plásticos , Receptor X de Pregnano/genética , Receptores de LDL/genética , Xenobióticos
10.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459922

RESUMEN

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Asunto(s)
Aterosclerosis , Infecciones por VIH , Animales , Aterosclerosis/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Lipoproteínas LDL , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores de LDL/metabolismo
11.
Environ Health Perspect ; 129(12): 127001, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851150

RESUMEN

BACKGROUND: Exposure to plastic-associated endocrine disrupting chemicals (EDCs) has been associated with an increased risk of cardiovascular disease (CVD) in humans. However, the underlying mechanisms for this association are unclear. Many EDCs have been shown to function as ligands of the nuclear receptor pregnane X receptor (PXR), which functions as xenobiotic sensor but also has pro-atherogenic effects in vivo. OBJECTIVE: We sought to investigate the contribution of PXR to the adverse effects dicyclohexyl phthalate (DCHP), a widely used phthalate plasticizer, on lipid homeostasis and CVD risk factors. METHODS: Cell-based assays, primary organoid cultures, and PXR conditional knockout and PXR-humanized mouse models were used to investigate the impact of DCHP exposure on PXR activation and lipid homeostasis in vitro and in vivo. Targeted lipidomics were performed to measure circulating ceramides, novel predictors for CVD. RESULTS: DCHP was identified as a potent PXR-selective agonist that led to higher plasma cholesterol levels in wild-type mice. DCHP was then demonstrated to activate intestinal PXR to elicit hyperlipidemia by using tissue-specific PXR-deficient mice. Interestingly, DCHP exposure also led to higher circulating ceramides in a PXR-dependent manner. DCHP-mediated PXR activation stimulated the expression of intestinal genes mediating lipogenesis and ceramide synthesis. Given that PXR exhibits considerable species-specific differences in receptor pharmacology, PXR-humanized mice were also used to replicate these findings. DISCUSSION: Although the adverse health effects of several well-known phthalates have attracted considerable attention, little is known about the potential impact of DCHP on human health. Our studies demonstrate that DCHP activated PXR to induce hypercholesterolemia and ceramide production in mice. These results indicate a potentially important role of PXR in contributing to the deleterious effects of plastic-associated EDCs on cardiovascular health in humans. Testing PXR activation should be considered for risk assessment of phthalates and other EDCs. https://doi.org/10.1289/EHP9262.


Asunto(s)
Receptores de Esteroides , Animales , Homeostasis , Lípidos , Ratones , Ratones Noqueados , Ácidos Ftálicos , Receptor X de Pregnano , Receptores de Esteroides/agonistas , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
12.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34324438

RESUMEN

Cardiac inflammation and fibrosis contribute significantly to hypertension-related adverse cardiac remodeling. IκB kinase ß (IKK-ß), a central coordinator of inflammation through activation of NF-κB, has been demonstrated as a key molecular link between inflammation and cardiovascular disease. However, the cell-specific contribution of IKK-ß signaling toward adverse cardiac remodeling remains elusive. Cardiac fibroblasts are one of the most populous nonmyocyte cell types in the heart that play a key role in mediating cardiac fibrosis and remodeling. To investigate the function of fibroblast IKK-ß, we generated inducible fibroblast-specific IKK-ß-deficient mice. Here, we report an important role of IKK-ß in the regulation of fibroblast functions and cardiac remodeling. Fibroblast-specific IKK-ß-deficient male mice were protected from angiotensin II-induced cardiac hypertrophy, fibrosis, and macrophage infiltration. Ablation of fibroblast IKK-ß inhibited angiotensin II-stimulated fibroblast proinflammatory and profibrogenic responses, leading to ameliorated cardiac remodeling and improved cardiac function in IKK-ß-deficient mice. Findings from this study establish fibroblast IKK-ß as a key factor regulating cardiac fibrosis and function in hypertension-related cardiac remodeling.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/genética , Fibroblastos/fisiología , Quinasa I-kappa B/genética , Miocardio/patología , Animales , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibrosis , Técnicas de Silenciamiento del Gen , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/inducido químicamente , Inflamación/metabolismo , Macrófagos , Masculino , Ratones , Miocarditis/genética , Miocarditis/metabolismo , Tamaño de los Órganos , Factores Protectores , Transducción de Señal , Remodelación Ventricular/genética
14.
Int J Biol Sci ; 16(14): 2527-2541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792855

RESUMEN

Excess glucocorticoid (GC) production is known to induce obesity and insulin resistance through increased activation of the glucocorticoid receptor (GR). The molecular mechanism for the non-genomic effects of excessive circulating GC on the insulin-signalling pathway in skeletal muscle is unknown. The plant alkaloid berberine has been shown to attenuate insulin resistance and inhibit gluconeogenesis in type 2 diabetic animals. A highly bioavailable berberine formulation termed Huang-Gui solid dispersion (HGSD), is a preparation of berberine coupled to sodium caprate and this markedly improving berberines bioavailability. Here we examined how HGSD treatment attenuated GR-mediated alteration in PI3K signalling and insulin resistance in diabetic rats, dexamethasone-treated mice and in insulin resistant C2C12 skeletal muscle cells. Blood glucose and skeletal muscle GC levels were increased and insulin signalling impaired in skeletal muscle of type 2 diabetic rats compared to controls. Treatment of these animals with HGSD restored blood glucose and skeletal muscle GC levels to that of controls. Insulin resistant C2C12 skeletal muscle cells exhibited impaired insulin signalling compared to controls and treatment of HGSD and RU486, an antagonist of GR, restored insulin signalling to that of control cells. Administration of dexamethasone to mice increased GR/GRα-associated PI3K and reduced IRS1-associated PI3K, phosphorylated-AKT, and membrane GLUT4 translocation resulting in a higher blood glucose concentration compared to controls. HGSD treatment of these mice improved insulin resistance by reducing the association of GR/GRα with PI3K. Excess GC-induced insulin resistance is mediated by increased association of GR with PI3K and treatment with HGSD attenuates these effects. We hypothesize that HGSD may be a promising candidate drug for the treatment of type 2 diabetes by reducing the association of GR with PI3K in skeletal muscle.


Asunto(s)
Berberina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Resistencia a la Insulina , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Berberina/farmacología , Línea Celular , Dexametasona , Evaluación Preclínica de Medicamentos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distribución Aleatoria , Ratas Wistar
15.
J Lipid Res ; 61(5): 696-706, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32170024

RESUMEN

The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRΔMyeLDLR-/- mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRΔMyeLDLR-/- mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.


Asunto(s)
Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Receptor X de Pregnano/deficiencia , Receptores de LDL/deficiencia , Animales , Antígenos CD36/metabolismo , Células Espumosas/citología , Células Espumosas/metabolismo , Regulación de la Expresión Génica , Lípidos/sangre , Ratones , Fenotipo
16.
J Am Heart Assoc ; 8(12): e012009, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31203708

RESUMEN

Background Obesity-associated chronic inflammation has been known to contribute to atherosclerosis development, but the underlying mechanisms remain elusive. Recent studies have revealed novel functions of IKK ß (inhibitor of NF -κB [nuclear factor κB] kinase ß), a key coordinator of inflammation through activation of NF -κB, in atherosclerosis and adipose tissue development. However, it is not clear whether IKK ß signaling in adipocytes can also affect atherogenesis. This study aims to investigate the impact of adipocyte IKK ß expression on atherosclerosis development in lean and obese LDLR (low-density lipoprotein receptor)-deficient ( LDLR -/-) mice. Methods and Results To define the role of adipocyte IKK ß in atherogenesis, we generated adipocyte-specific IKK ß-deficient LDLR -/- ( IKK ßΔAd LDLR -/-) mice. Targeted deletion of IKK ß in adipocytes did not affect adiposity and atherosclerosis in lean LDLR -/- mice when fed a low-fat diet. In response to high-fat feeding, however, IKK ßΔAd LDLR -/- mice had defective adipose remodeling and increased adipose tissue and systemic inflammation. Deficiency of adipocyte IKK ß did not affect atherosclerotic lesion sizes but resulted in enhanced lesional inflammation and increased plaque vulnerability in obese IKK ßΔAd LDLR -/- mice. Conclusions These data demonstrate that adipocyte IKK ß signaling affects the evolution of atherosclerosis plaque vulnerability in obese LDLR -/- mice. This study suggests that the functions of IKK ß signaling in atherogenesis are complex, and IKK ß in different cell types or tissues may have different effects on atherosclerosis development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adipocitos/enzimología , Quinasa I-kappa B/deficiencia , Placa Aterosclerótica/etiología , Animales , Masculino , Ratones Obesos
17.
JCI Insight ; 4(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728326

RESUMEN

Quetiapine, one of the most prescribed atypical antipsychotics, has been associated with hyperlipidemia and an increased risk for cardiovascular disease in patients, but the underlying mechanisms remain unknown. Here, we identified quetiapine as a potent and selective agonist for pregnane X receptor (PXR), a key nuclear receptor that regulates xenobiotic metabolism in the liver and intestine. Recent studies have indicated that PXR also plays an important role in lipid homeostasis. We generated potentially novel tissue-specific PXR-KO mice and demonstrated that quetiapine induced hyperlipidemia by activating intestinal PXR signaling. Quetiapine-mediated PXR activation stimulated the intestinal expression of cholesterol transporter Niemann-Pick C1-Like 1 (NPC1L1) and microsomal triglyceride transfer protein (MTP), leading to increased intestinal lipid absorption. While NPC1L1 is a known PXR target gene, we identified a DR-1-type PXR-response element in the MTP promoter and established MTP as a potentially novel transcriptional target of PXR. Quetiapine's effects on PXR-mediated gene expression and cholesterol uptake were also confirmed in cultured murine enteroids and human intestinal cells. Our findings suggest a potential role of PXR in mediating adverse effects of quetiapine in humans and provide mechanistic insights for certain atypical antipsychotic-associated dyslipidemia.

18.
J Hepatol ; 70(5): 930-940, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677459

RESUMEN

BACKGROUND & AIMS: The most prescribed non-nucleoside reverse transcriptase inhibitor, efavirenz, has been associated with elevated risk of dyslipidemia and hepatic steatosis in HIV-infected patients but the underlying mechanisms remain elusive. Herein, we investigated the role of pregnane X receptor (PXR) in mediating the adverse effects of efavirenz on lipid homeostasis. METHODS: Cell-based reporter assays, primary cell culture, and multiple mouse models including conditional knockout and humanized mice were combined to study the impact of efavirenz on PXR activities and lipid homeostasis in vitro and in vivo. A novel liver-specific Pxr knockout mouse model was also generated to determine the contribution of hepatic PXR signaling to efavirenz-elicited dyslipidemia and hepatic steatosis. RESULTS: We found that efavirenz is a potent PXR-selective agonist that can efficiently activate PXR and induce its target gene expression in vitro and in vivo. Treatment with efavirenz-induced hypercholesterolemia and hepatic steatosis in mice but deficiency of hepatic PXR abolished these adverse effects. Interestingly, efavirenz-mediated PXR activation regulated the expression of several key hepatic lipogenic genes including fatty acid transporter CD36 and cholesterol biosynthesis enzyme squalene epoxidase (SQLE), leading to increased lipid uptake and cholesterol biosynthesis in hepatic cells. While CD36 is a known PXR target gene, we identified a DR-2-type of PXR-response element in the SQLE promoter and established SQLE as a direct transcriptional target of PXR. Since PXR exhibits considerable differences in its pharmacology across species, we also confirmed these findings in PXR-humanized mice and human primary hepatocytes. CONCLUSIONS: The widely prescribed antiretroviral drug efavirenz induces hypercholesterolemia and hepatic steatosis by activating PXR signaling. Activation of PXR should be taken into consideration for patients undergoing long-term treatment with PXR agonistic antiretroviral drugs. LAY SUMMARY: Efavirenz is widely prescribed for HIV-infected patients but has some side effects. It can increase lipid levels in patients' blood and liver. Here we show that efavirenz can activate a unique liver protein called PXR which mediates the adverse effects of efavirenz on lipid levels in mouse models.


Asunto(s)
Benzoxazinas/efectos adversos , Hígado Graso/inducido químicamente , Hipercolesterolemia/inducido químicamente , Receptor X de Pregnano/agonistas , Inhibidores de la Transcriptasa Inversa/efectos adversos , Alquinos , Animales , Antígenos CD36/fisiología , Colesterol/biosíntesis , Ciclopropanos , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Receptor X de Pregnano/fisiología , Transducción de Señal/fisiología , Escualeno-Monooxigenasa/fisiología
19.
Biofactors ; 44(5): 496-502, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30365229

RESUMEN

Berberine, a widely used isoquinoline alkaloid in traditional Chinese medicine, has been proved to be a potential candidate in liver cancer therapy. However, the low therapeutic dose in the tumor target which is due to the poor solubility and oral bioavailability has limited its clinical application. In this study, fluorescent self-carried Berberine microrods (Ber-MRs) were prepared in gram-scale through a facile and cheap antisolvent precipitation method. Ber-MRs exhibited good optical properties, pH-responsive drug release behavior and selective and safe antitumor performance in vitro and in vivo without obvious toxicity. These findings have demonstrated that Ber-MRs are promising for efficient and safe liver cancer therapy. © 2018 BioFactors, 44(5):496-502, 2018.


Asunto(s)
Berberina/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Medicina Tradicional China , Administración Oral , Animales , Berberina/síntesis química , Berberina/química , Disponibilidad Biológica , Liberación de Fármacos , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/patología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Solubilidad/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Eur J Pharmacol ; 769: 55-63, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26522928

RESUMEN

Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3ß) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (ß-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased ß-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3ß activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/farmacología , Cardiomegalia/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Corazón/efectos de los fármacos , Miocardio/patología , Palmitatos/farmacología , Animales , Berberina/uso terapéutico , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Activación Enzimática/efectos de los fármacos , Fibrosis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Corazón/fisiopatología , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA