Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 210(2): 273-85, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26195667

RESUMEN

ER-derived COPII-coated vesicles are conventionally targeted to the Golgi. However, during cell stress these vesicles also become a membrane source for autophagosomes, distinct organelles that target cellular components for degradation. How the itinerary of COPII vesicles is coordinated on these pathways remains unknown. Phosphorylation of the COPII coat by casein kinase 1 (CK1), Hrr25, contributes to the directional delivery of ER-derived vesicles to the Golgi. CK1 family members are thought to be constitutively active kinases that are regulated through their subcellular localization. Instead, we show here that the Rab GTPase Ypt1/Rab1 binds and activates Hrr25/CK1δ to spatially regulate its kinase activity. Consistent with a role for COPII vesicles and Hrr25 in membrane traffic and autophagosome biogenesis, hrr25 mutants were defective in ER-Golgi traffic and macroautophagy. These studies are likely to serve as a paradigm for how CK1 kinases act in membrane traffic.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Unión al GTP rab/fisiología , Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Humanos , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 110(48): 19432-7, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218626

RESUMEN

The transport protein particle (TRAPP) III complex, comprising the TRAPPI complex and additional subunit Trs85, is an autophagy-specific guanine nucleotide exchange factor for the Rab GTPase Ypt1 that is recruited to the phagophore assembly site when macroautophagy is induced. We present the single-particle electron microscopy structure of TRAPPIII, which reveals that the dome-shaped Trs85 subunit associates primarily with the Trs20 subunit of TRAPPI. We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment. We provide evidence that COPII-coated vesicles and the ER-Golgi fusion machinery are needed for macroautophagy. Our results imply that TRAPPIII binds to COPII vesicles at the phagophore assembly site and that COPII vesicles may provide one of the membrane sources used in autophagosome formation. These events are conserved in yeast to mammals.


Asunto(s)
Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células COS , Chlorocebus aethiops , Cromatografía en Gel , Clonación Molecular , Electroporación , Escherichia coli , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Microscopía Fluorescente , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Mol Biol Cell ; 24(17): 2727-38, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864707

RESUMEN

Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(24): 9800-5, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716696

RESUMEN

When macroautophagy, a catabolic process that rids the cells of unwanted proteins, is initiated, 30-60 nm Atg9 vesicles move from the Golgi to the preautophagosomal structure (PAS) to initiate autophagosome formation. The Rab GTPase Ypt1 and its mammalian homolog Rab1 regulate macroautophagy and two other trafficking events: endoplasmic reticulum-Golgi and intra-Golgi traffic. How a Rab, which localizes to three distinct cellular locations, achieves specificity is unknown. Here we show that transport protein particle III (TRAPPIII), a conserved autophagy-specific guanine nucleotide exchange factor for Ypt1/Rab1, is recruited to the PAS by Atg17. We also show that activated Ypt1 recruits the putative membrane curvature sensor Atg1 to the PAS, bringing it into proximity to its binding partner Atg17. Since Atg17 resides at the PAS, these events ensure that Atg1 will specifically localize to the PAS and not to the other compartments where Ypt1 resides. We propose that Ypt1 regulates Atg9 vesicle tethering by modulating the delivery of Atg1 to the PAS. These events appear to be conserved in higher cells.


Asunto(s)
Fagosomas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Células COS , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/metabolismo
5.
Mol Biol Cell ; 22(19): 3634-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21813735

RESUMEN

The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Unión Proteica , Transporte de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Nature ; 473(7346): 181-6, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21532587

RESUMEN

How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Ratas , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(17): 7811-6, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20375281

RESUMEN

Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.


Asunto(s)
Autofagia/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Cromatografía en Gel , Cartilla de ADN/genética , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Fagosomas/metabolismo
8.
Mol Biol Cell ; 20(19): 4205-15, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656848

RESUMEN

The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to gamma1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteína Coat de Complejo I/genética , Citosol/metabolismo , Citosol/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Células 3T3 NIH , Interferencia de ARN , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab1/genética
9.
J Mol Biol ; 389(2): 275-88, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19361519

RESUMEN

TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5'-(beta,gamma-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (approximately 10(-4) s(-1)) and accelerated >1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg(2+)-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by <80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Escherichia coli/genética , Nucleótidos de Guanina/metabolismo , Cinética , Unión Proteica , Subunidades de Proteína , Termodinámica , Transducción Genética
10.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585354

RESUMEN

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/química
11.
Mol Endocrinol ; 22(2): 477-84, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17916655

RESUMEN

It has been suggested that a thyroglobulin (Tg)-R19K missense mutation may be a newly identified cause of human congenital goiter, which is surprising for this seemingly conservative substitution. Here, we have examined the intracellular fate of recombinant mutant Tg expressed in COS-7 cells. Incorporation of the R19K mutation largely blocked Tg secretion, and this mutant was approximately 90% degraded intracellularly over a 24-h period after synthesis. Before its degradation, the Tg-R19K mutant exhibited abnormally increased association with molecular chaperones BiP, calnexin, and protein disulfide isomerase, and was unable to undergo anterograde advance from the endoplasmic reticulum (ER) through the Golgi complex. Inhibitors of proteasomal proteolysis and ER mannosidase-I both prevented ER-associated degradation of the Tg-R19K mutant and increased its association with ER molecular chaperones. ER quality control around Tg residue 19 is not dependent upon charge but upon side-chain packing, because Tg-R19Q was efficiently secreted. Whereas a Tg mutant truncated after residue 174 folds sufficiently well to escape ER quality control, introduction of the R19K point mutation blocked its secretion. The data indicate that the R19K mutation induces local misfolding in the amino-terminal domain of Tg that has global effects on Tg transport and thyroid hormonogenesis.


Asunto(s)
Bocio/genética , Mutación , Tiroglobulina/genética , Alcaloides/farmacología , Sustitución de Aminoácidos , Animales , Arginina/genética , Transporte Biológico , Western Blotting , Células COS , Calnexina/metabolismo , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Bocio/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Inmunoprecipitación , Leupeptinas/farmacología , Lisina/genética , Ratones , Chaperonas Moleculares/metabolismo , Unión Proteica , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Transducción de Señal/efectos de los fármacos , Tiroglobulina/química , Tiroglobulina/metabolismo
12.
Nature ; 445(7130): 941-4, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17287728

RESUMEN

The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Proteínas Activadoras de GTPasa , Aparato de Golgi/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 282(9): 6183-91, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17200118

RESUMEN

Newly synthesized thyroglobulin (Tg), the secretory glycoprotein that serves as precursor in thyroid hormone synthesis, normally forms transient covalent protein complexes with oxidoreductases of the endoplasmic reticulum (ER). The Tg-G2320R mutation is responsible for congenital hypothyroidism in rdw/rdw rats, in which a lack of secondary thyroid enlargement (goiter) implicates death of thyrocytes as part of disease pathogenesis. We found that mutant Tg-G2320R was retained within the ER with no detectable synthesis of thyroxine, had persistent exposure of free cysteine thiols, and was associated with activated ER stress response but incomplete ER-associated degradation (ERAD). Tg-G2320R associated with multiple ER resident proteins, most notably ERp72, including covalent Tg-ERp72 interactions. In PC Cl3 thyrocytes, inducible overexpression of ERp72 increased the ability of cells to maintain Tg cysteines in a reduced state. Noncovalent interactions of several ER chaperones with newly synthesized Tg-G2320R diminished over time in parallel with ERAD of the mutant protein, yet a small ERAD-resistant Tg fraction remained engaged in covalent association with ERp72 even 2 days post-synthesis. Such covalent protein aggregates may set the stage for apoptotic thyrocyte cell death, preventing thyroid goiter formation in rdw/rdw rats.


Asunto(s)
Enanismo/etiología , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Tiroglobulina/genética , Animales , Apoptosis , Enanismo/metabolismo , Retículo Endoplásmico , Bocio , Glicoproteínas de Membrana/genética , Mutación Missense , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Mutantes , Tiroglobulina/metabolismo , Glándula Tiroides/citología
14.
Biochem Biophys Res Commun ; 350(3): 669-77, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17027922

RESUMEN

Large tethering complexes mediate the initial interaction of a transport vesicle with its target membrane. There are two forms of the multi-subunit tethering complex called TRAPP (TRAPPI and TRAPPII) that tether transport vesicles in different trafficking steps. Understanding TRAPP complex assembly and the protein-protein interactions among the subunits is an important step in elucidating the function of this tether. Here we have used several different approaches to study the protein-protein interactions among the subunits of the TRAPP complexes in both mammalian cells and yeast. Our studies have revealed that the low molecular weight subunits of TRAPP form two subcomplexes in vitro. One subcomplex contains mammalian BET3 (mBET3), mTRS31 and mTRS20, while mBET5 and mTRS23 form a second subcomplex. Furthermore, mBET3 directly interacts with mBET5 in vitro. Our findings also suggest that the TRAPPII-specific subunit, yTrs120p (yeast Trs120p), binds to the periphery of the TRAPPII complex. Although the non-essential TRAPP subunit yTrs33p interacts with yBet3p, yTrs33p is not required for TRAPP complex assembly. Together our findings indicate that BET3 plays an important role in the organization of the TRAPP complexes in both mammalian cells and yeast.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...