Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826287

RESUMEN

The cell-type specific role of the vascular endothelial growth factors (VEGFs) in the pathogenesis of Alzheimer's disease (AD) is not well characterized. In this study, we utilized a single-nucleus RNA sequencing dataset from Dorsolateral Prefrontal Cortex (DLFPC) of 424 donors from the Religious Orders Study and Memory and Aging Project (ROS/MAP) to investigate the effect of 10 VEGF genes ( VEGFA, VEGFB, VEGFC, VEGFD, PGF, FLT1, FLT4, KDR, NRP1 , and NRP2 ) on AD endophenotypes. Mean age of death was 89 years, among which 68% were females, and 52% has AD dementia. Negative binomial mixed models were used for differential expression analysis and for association analysis with ß-amyloid load, PHF tau tangle density, and both cross-sectional and longitudinal global cognitive function. Intercellular VEGF-associated signaling was profiled using CellChat. We discovered prefrontal cortical FLT1 expression was upregulated in AD brains in both endothelial and microglial cells. Higher FLT1 expression was also associated with worse cross-sectional global cognitive function, longitudinal cognitive trajectories, and ß-amyloid load. Similarly, higher endothelial FLT4 expression was associated with more ß-amyloid load. In contrast to the receptors, VEGFB showed opposing effects on ß-amyloid load whereby higher levels in oligodendrocytes was associated with high amyloid burden, while higher levels in inhibitory neurons was associated with lower amyloid burden. Finally, AD cells showed significant reduction in overall VEGF signaling comparing to those from cognitive normal participants. Our results highlight key changes in VEGF receptor expression in endothelial and microglial cells during AD, and the potential protective role of VEGFB in neurons.

2.
Commun Biol ; 7(1): 569, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750228

RESUMEN

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Proteínas tau , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Femenino , Masculino , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Anciano , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Anciano de 80 o más Años , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Astrocitos/metabolismo
3.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712204

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathological manifestations and is the leading cause of cognitive decline and dementia in elderly individuals. A major goal in AD research is to identify new therapeutic pathways by studying the molecular and cellular changes in the disease, either downstream or upstream of the pathological hallmarks. In this study, we present a comprehensive investigation of cellular heterogeneity from the temporal cortex region of 40 individuals, comprising healthy donors and individuals with differing tau and amyloid burden. Using single-nucleus transcriptome analysis of 430,271 nuclei from both gray and white matter of these individuals, we identified cell type-specific subclusters in both neuronal and glial cell types with varying degrees of association with AD pathology. In particular, these associations are present in layer specific glutamatergic (excitatory) neuronal types, along with GABAergic (inhibitory) neurons and glial subtypes. These associations were observed in early as well as late pathological progression. We extended this analysis by performing multiplexed in situ hybridization using the CARTANA platform, capturing 155 genes in 13 individuals with varying levels of tau pathology. By modeling the spatial distribution of these genes and their associations with the pathology, we not only replicated key findings from our snRNA data analysis, but also identified a set of cell type-specific genes that show selective enrichment or depletion near pathological inclusions. Together, our findings allow us to prioritize specific cell types and pathways for targeted interventions at various stages of pathological progression in AD.

4.
Neuron ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38701790

RESUMEN

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.

5.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562777

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

6.
Stem Cell Res Ther ; 15(1): 104, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600587

RESUMEN

BACKGROUND: Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS: Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS: Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS: Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Microglía/metabolismo , Proteómica , Péptidos beta-Amiloides , Genómica , Enfermedad de Alzheimer/genética , Cromatina/genética , Cromatina/metabolismo
7.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659827

RESUMEN

Cortical interneurons represent a diverse set of neuronal subtypes characterized in part by their striking degree of synaptic specificity. However, little is known about the extent of synaptic diversity because of the lack of unbiased methods to extract synaptic features among interneuron subtypes. Here, we develop an approach to aggregate image features from fluorescent confocal images of interneuron synapses and their post-synaptic targets, in order to characterize the heterogeneity of synapses at fine scale. We started by training a model that recognizes pre- and post-synaptic compartments and then determines the target of each genetically-identified interneuron synapse in vitro and in vivo. Our model extracts hundreds of spatial and intensity features from each analyzed synapse, constructing a multidimensional data set, consisting of millions of synapses, which allowed us to perform an unsupervised analysis on this dataset, uncovering novel synaptic subgroups. The subgroups were spatially distributed in a highly structured manner that revealed the local underlying topology of the postsynaptic environment. Dendrite-targeting subgroups were clustered onto subdomains of the dendrite along the proximal to distal axis. Soma-targeting subgroups were enriched onto different postsynaptic cell types. We also find that the two main subclasses of interneurons, basket cells and somatostatin interneurons, utilize distinct strategies to enact inhibitory coverage. Thus, our analysis of multidimensional synaptic features establishes a conceptual framework for studying interneuron synaptic diversity.

8.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626772

RESUMEN

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Asunto(s)
Demencia Frontotemporal , Neuronas , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Animales , Proteínas tau/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/patología , Mutación/genética
9.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496679

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

10.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514782

RESUMEN

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Encéfalo/metabolismo , Sitios de Carácter Cuantitativo/genética , Variación Genética/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
11.
Alzheimers Dement (N Y) ; 10(1): e12458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469553

RESUMEN

INTRODUCTION: In September 2022, The Jackson Laboratory Center for Alzheimer's and Dementia Research (JAX CADR) hosted a workshop with leading researchers in the Alzheimer's disease and related dementias (ADRD) field. METHODS: During the workshop, the participants brainstormed new directions to overcome current barriers to providing patients with effective ADRD therapeutics. The participants outlined specific areas of focus. Following the workshop, each group used standard literature search methods to provide background for each topic. RESULTS: The team of invited experts identified four key areas that can be collectively addressed to make a significant impact in the field: (1) Prioritize the diversification of disease targets, (2) enhance factors promoting resilience, (3) de-risk clinical pipeline, and (4) centralize data management. DISCUSSION: In this report, we review these four objectives and propose innovations to expedite ADRD therapeutic pipelines.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38364947

RESUMEN

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.

13.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370689

RESUMEN

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

14.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260300

RESUMEN

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

15.
PLoS One ; 19(1): e0296280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38180982

RESUMEN

Microglia, the resident immune cells of the brain, are crucial in the development of the nervous system. Recent evidence demonstrates that microglia modulate adult hippocampal neurogenesis by inhibiting cell proliferation of neural precursors and survival both in vitro and in vivo, thus maintaining a balance between cell division and cell death in the neural stem cell pool. There are increasing reports suggesting these microglia found in neurogenic niches differ from their counterparts in non-neurogenic areas. Here, we present evidence that hippocampal microglia exhibit transcriptomic heterogeneity, with some cells expressing genes associated with neurogenesis. By comprehensively profiling myeloid lineage cells in the hippocampus using single cell RNA-sequencing, we have uncovered a small, yet distinct population of microglia which exhibit depletion in genes associated with homeostatic microglia and enrichment of genes associated with phagocytosis. Intriguingly, this population also expresses a gene signature with substantial overlap with previously characterized phenotypes, including disease associated microglia (DAM), a particularly unique and compelling microglial state.


Asunto(s)
Perfilación de la Expresión Génica , Microglía , Adulto , Humanos , Transcriptoma , Hipocampo , Neurogénesis/genética
16.
Alzheimers Dement ; 20(1): 525-537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37727065

RESUMEN

INTRODUCTION: The secreted phosphoprotein 1 (SPP1) gene expressed by CD11c+ cells is known to be associated with microglia activation and neuroinflammatory diseases. As most studies rely on mouse models, we investigated these genes and proteins in the cortical brain tissue of older adults and their role in Alzheimer's disease (AD) and related disorders. METHODS: We leveraged protein measurements, single-nuclei, and RNASeq data from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) of over 1200 samples for association analysis. RESULTS: Expression of SPP1 and its encoded protein osteopontin were associated with faster cognitive decline and greater odds of common neuropathologies. At single-cell resolution,  integrin subunit alpha X (ITGAX) was highly expressed in microglia, where specific subpopulations were associated with AD and cerebral amyloid angiopathy. DISCUSSION: The study provides evidence of SPP1 and ITGAX association with cognitive decline and common neuropathologies identifying a microglial subset associated with disease.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Disfunción Cognitiva , Animales , Ratones , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Cognición/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Osteopontina/genética , Osteopontina/metabolismo
18.
Biol Psychiatry ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38141910

RESUMEN

BACKGROUND: Depression, a common psychiatric illness and global public health problem, remains poorly understood across different life stages, which hampers the development of novel treatments. METHODS: To identify new candidate genes for therapeutic development, we performed differential gene expression analysis of single-nucleus RNA sequencing data from the dorsolateral prefrontal cortex of older adults (n = 424) in relation to antemortem depressive symptoms. Additionally, we integrated genome-wide association study results for depression (n = 500,199) along with genetic tools for inferring the expression of 14,048 unique genes in 7 cell types and 52 cell subtypes to perform a transcriptome-wide association study of depression followed by Mendelian randomization. RESULTS: Our single-nucleus transcriptome-wide association study analysis identified 68 candidate genes for depression and showed the greatest number being in excitatory and inhibitory neurons. Of the 68 genes, 53 were novel compared to previous studies. Notably, gene expression in different neuronal subtypes had varying effects on depression risk. Traits with high genetic correlations with depression, such as neuroticism, shared more transcriptome-wide association study genes than traits that were not highly correlated with depression. Complementing these analyses, differential gene expression analysis across 52 neocortical cell subtypes showed that genes such as KCNN2, SCAI, WASF3, and SOCS6 were associated with late-life depressive symptoms in specific cell subtypes. CONCLUSIONS: These 2 sets of analyses illustrate the utility of large single-nucleus RNA sequencing data both to uncover genes whose expression is altered in specific cell subtypes in the context of depressive symptoms and to enhance the interpretation of well-powered genome-wide association studies so that we can prioritize specific susceptibility genes for further analysis and therapeutic development.

19.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036535

RESUMEN

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Factores de Riesgo
20.
Nat Commun ; 14(1): 7552, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38016942

RESUMEN

Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1ß and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA