Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(1): e2300257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038229

RESUMEN

Chinese hamster ovary (CHO) cells are widely used for production of biologics including therapeutic monoclonal antibodies. Cell death in CHO cells is a significant factor in biopharmaceutical production, impacting both product yield and quality. Apoptosis has previously been described as the major form of cell death occurring in CHO cells in bioreactors. However, these studies were undertaken when less was known about non-apoptotic cell death pathways. Here, we report the occurrence of non-apoptotic cell death in an industrial antibody-producing CHO cell line during fed-batch culture. Under standard conditions, crucial markers of apoptosis were not observed despite a decrease in viability towards the end of the culture; only by increasing stress within the system did we observe caspase activation indicative of apoptosis. In contrast, markers of parthanatos and ferroptosis were observed during standard fed-batch culture, indicating that these non-apoptotic cell death pathways contribute to viability loss under these conditions. These findings pave the way for targeting non-conventional cell death pathways to improve viability and biologic production in CHO cells.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetinae , Animales , Cricetulus , Células CHO , Apoptosis
2.
Nat Commun ; 14(1): 5848, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730720

RESUMEN

Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.


Asunto(s)
Actinas , Vacuolas , Citoesqueleto de Actina , Fenómenos Fisiológicos Celulares , Ósmosis
3.
Curr Biol ; 22(17): 1595-600, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22840520

RESUMEN

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plant-specific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Análisis de Secuencia de Proteína , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...