RESUMEN
Eukaryotic translation initiation factor eIF4B is required for efficient cap-dependent translation, it is overexpressed in cancer cells, and may influence stress granule formation. Due to the high degree of intrinsic disorder, eIF4B is rarely observed in cryo-EM structures of translation complexes and only ever by its single structured RNA recognition motif domain, leaving the molecular details of its large intrinsically disordered region (IDR) unknown. By integrating experiments and simulations we demonstrate that eIF4B IDR orchestrates and fine-tunes an intricate transition from monomers to a condensed phase, in which large-size dynamic oligomers form before mesoscopic phase separation. Single-molecule spectroscopy combined with molecular simulations enabled us to characterize the conformational ensembles and underlying intra- and intermolecular dynamics across the oligomerization transition. The observed sensitivity to ionic strength and molecular crowding in the self-association landscape suggests potential regulation of eIF4B nanoscopic and mesoscopic behaviors such as driven by protein modifications, binding partners or changes to the cellular environment.
Asunto(s)
Simulación de Dinámica Molecular , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Microscopía por Crioelectrón , Multimerización de Proteína , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Factores Eucarióticos de IniciaciónRESUMEN
Structural disorder in proteins is central to cellular signaling, where conformational plasticity equips molecules to promiscuously interact with different partners. By engaging with multiple binding partners via the rearrangement of its three helices, the nuclear coactivator binding domain (NCBD) of the CBP/p300 transcription factor is a paradigmatic example of promiscuity. Recently, molecular simulations and experiments revealed that, through the establishment of long-range electrostatic interactions, intended as salt-bridges formed between the post-translationally inserted phosphate and positively charged residues in helix H3 of NCBD, phosphorylation triggers NCBD compaction, lowering its affinity for binding partners. By means of extensive molecular simulations, we here investigated the effect of short-range electrostatics on the conformational ensemble of NCBD, by monitoring the interactions between a phosphorylated serine and conserved positively charged residues within the NCBD phospho-motif. We found that empowering proximal electrostatic interactions, as opposed to long-range electrostatics, can reshape the NCBD ensemble rescuing the binding competency of phosphorylated NCBD. Given the conservation of positive charges in phospho-motifs, proximal electrostatic interactions might dampen the effects of phosphorylation and act as a relay to regulate phosphorylated intrinsically disordered proteins, ultimately tuning the binding affinity for different cellular partners.
Asunto(s)
Unión Proteica , Electricidad Estática , Fosforilación , Simulación de Dinámica Molecular , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Secuencias de Aminoácidos , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo , Conformación Proteica , HumanosRESUMEN
More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Factores de Transcripción SOXB1 , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/química , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/genéticaRESUMEN
Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.
Asunto(s)
Arabidopsis , Hidrolasas de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Mutación/genética , Pectinas/metabolismo , Concentración de Iones de HidrógenoRESUMEN
Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.
Asunto(s)
Arabidopsis , Poligalacturonasa , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Pared Celular/metabolismoRESUMEN
Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.
Asunto(s)
Simulación de Dinámica Molecular , Polisacárido Liasas , Polisacárido Liasas/química , Glicósidos , Pectinas/química , Especificidad por SustratoRESUMEN
The properties of milk proteins differ between mammalian species. ß-Lactoglobulin (ßlg) proteins from caprine and bovine milk are sequentially and structurally highly similar, yet their physicochemical properties differ, particularly in response to pH. To resolve this conundrum, we compared the dynamics of both the monomeric and dimeric states for each homologue at pH 6.9 and 7.5 using hydrogen/deuterium exchange experiments. At pH 7.5, the rate of exchange is similar across both homologues, but at pH 6.9 the dimeric states of the bovine ßlg B variant homologue have significantly more conformational flexibility compared with caprine ßlg. Molecular dynamics simulations provide a mechanistic rationale for the experimental observations, revealing that variant-specific substitutions encode different conformational ensembles with different dynamic properties consistent with the hydrogen/deuterium exchange experiments. Understanding the dynamic differences across ßlg homologues is essential to understand the different responses of these milks to processing, human digestion, and differences in immunogenicity.
Asunto(s)
Cabras , Lactoglobulinas , Humanos , Animales , Lactoglobulinas/genética , Lactoglobulinas/química , Deuterio , Cabras/genética , Hidrógeno , Concentración de Iones de HidrógenoRESUMEN
Intrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear. Here, we examine the representative case of the nuclear coactivator binding domain (NCBD) of the large multidomain protein CBP, a hub in transcriptional regulation, and the interaction with several of its binding partners. Single-molecule Förster resonance energy transfer measurements show that phosphorylation of NCBD reduces its binding affinity, with effects that vary depending on the binding partner and the site and number of modifications. The complexity of the interaction is further increased by the dependence of the affinities on peptidyl-prolyl cis/trans isomerization in NCBD. Overall, our results reveal the potential for allosteric regulation on at least three levels: the different affinities of NCBD for its different binding partners, the differential modulation of these affinities by phosphorylation, and the effect of peptidyl-prolyl cis/trans isomerization on binding.
Asunto(s)
Pliegue de Proteína , Proteínas , Fosforilación , Isomerismo , Proteínas/metabolismo , Unión Proteica , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismoRESUMEN
Efficient design of functional proteins with higher thermal stability remains challenging especially for highly diverse sequence variants. Considering the evolutionary pressure on protein folds, sequence design optimizing evolutionary fitness could help designing folds with higher stability. Using a generative evolution fitness model trained to capture variation patterns in natural sequences, we designed artificial sequences of a proteinaceous inhibitor of pectin methylesterase enzymes. These inhibitors have considerable industrial interest to avoid phase separation in fruit juice manufacturing or reduce methanol in distillates, averting chromatographic passages triggering unwanted aroma loss. Six out of seven designs with up to 30 % divergence to other inhibitor sequences are functional and two have improved thermal stability. This method can improve protein stability expanding functional protein sequence space, with traits valuable for industrial applications and scientific research.
Asunto(s)
Proteínas , Secuencia de Aminoácidos , Proteínas/química , Estabilidad ProteicaRESUMEN
We simulated the dynamics of a set of peptides characterized by ensembles rich in PPII-helical content, to assess the ability of the most recent Kirkwood-Buff force field (KBFF20) to sample this conformational peculiarity. KBFF has been previously shown to capably reproduce experimental dimensions of disordered proteins, while being limited in confidently sampling structured proteins. Further development of the force field bridged this gap. It is however still unknown what are the main differences between KBFF and AMBER/CHARMM force fields. A direct comparison is now possible as both AMBER/CHARMM force fields have been used to sample peptides rich in PPII-helical content. We found that KBFF20 samples' PPII-helical content qualitatively matches both AMBER and CHARMM force fields, with the main difference being the KBFF ability to populate the αR region of the Ramachandran plot in the set of simulated peptides. Overall, KBFF20 is a well-balanced force field, able to sample the dynamics of both structured and unstructured proteins.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Simulación de Dinámica Molecular , Conformación Molecular , Péptidos/químicaRESUMEN
Cellular mechanosensing is pivotal for virtually all biological processes, and many molecular mechano-sensors and their way of function are being uncovered. In this work, we suggest that c-Src kinase acts as a direct mechano-sensor. c-Src is responsible for, among others, cell proliferation, and shows increased activity in stretched cells. In its native state, c-Src has little basal activity, because its kinase domain binds to an SH2 and SH3 domain. However, it is known that c-Src can bind to p130Cas, through which force can be transmitted to the membrane. Using molecular dynamics simulations, we show that force acting between the membrane-bound N-terminus of the SH3 domain and p130Cas induces partial SH3 unfolding, thereby impeding rebinding of the kinase domain onto SH2/SH3 and effectively enhancing kinase activity. Forces involved in this process are slightly lower or similar to the forces required to pull out c-Src from the membrane through the myristoyl linker, and key interactions involved in this anchoring are salt bridges between negative lipids and nearby basic residues in c-Src. Thus, c-Src appears to be a candidate for an intriguing mechanosensing mechanism of impaired kinase inhibition, which can be potentially tuned by membrane composition and other environmental factors.
Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Proteína Tirosina Quinasa CSK , Fosforilación , Proteínas Tirosina Quinasas/metabolismoRESUMEN
Highly charged intrinsically disordered proteins are essential regulators of chromatin structure and transcriptional activity. Here we identify a surprising mechanism of molecular competition that relies on the pronounced dynamical disorder present in these polyelectrolytes and their complexes. The highly positively charged human linker histone H1.0 (H1) binds to nucleosomes with ultrahigh affinity, implying residence times incompatible with efficient biological regulation. However, we show that the disordered regions of H1 retain their large-amplitude dynamics when bound to the nucleosome, which enables the highly negatively charged and disordered histone chaperone prothymosin α to efficiently invade the H1-nucleosome complex and displace H1 via a competitive substitution mechanism, vastly accelerating H1 dissociation. By integrating experiments and simulations, we establish a molecular model that rationalizes the remarkable kinetics of this process structurally and dynamically. Given the abundance of polyelectrolyte sequences in the nuclear proteome, this mechanism is likely to be widespread in cellular regulation.
Asunto(s)
Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Nucleosomas/metabolismo , Polielectrolitos/metabolismo , HumanosRESUMEN
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Nucleosomas , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Genoma , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismoRESUMEN
Metal complexes can be considered a "paradigm of promiscuity" when it comes to their interactions with proteins. They often form adducts with a variety of donor atoms in an unselective manner. We have characterized the adducts formed between a series of isostructural N-heterocyclic carbene (NHC) complexes with Ru, Os, Rh, and Ir centers and the model protein hen egg white lysozyme by X-ray crystallography and mass spectrometry. Distinctive behavior for the metal compounds was observed with the more labile Ru and Rh complexes targeting mainly a surface l-histidine moiety through cleavage of p-cymene or NHC co-ligands, respectively. In contrast, the more inert Os and Ir derivatives were detected abundantly in an electronegative binding pocket after undergoing ligand exchange of a chlorido ligand for an amino acid side chain. Computational studies supported the binding profiles and hinted at the role of the protein microenvironment for metal complexes eliciting selectivity for specific binding sites on the protein.
RESUMEN
Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.
Asunto(s)
Ascomicetos/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Poligalacturonasa/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidad , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Lino/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Modelos Moleculares , Pectinas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Poligalacturonasa/química , Poligalacturonasa/genética , Electricidad Estática , Especificidad por SustratoRESUMEN
The Parkinson's disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn's function(s) at the plasma membrane.
Asunto(s)
Membrana Celular/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , alfa-Sinucleína/metabolismo , Membrana Celular/genética , Humanos , Enfermedad de Parkinson/genética , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Transporte de Proteínas , alfa-Sinucleína/genéticaRESUMEN
As established nearly a century ago, mechanoradicals originate from homolytic bond scission in polymers. The existence, nature and biological relevance of mechanoradicals in proteins, instead, are unknown. We here show that mechanical stress on collagen produces radicals and subsequently reactive oxygen species, essential biological signaling molecules. Electron-paramagnetic resonance (EPR) spectroscopy of stretched rat tail tendon, atomistic molecular dynamics simulations and quantum-chemical calculations show that the radicals form by bond scission in the direct vicinity of crosslinks in collagen. Radicals migrate to adjacent clusters of aromatic residues and stabilize on oxidized tyrosyl radicals, giving rise to a distinct EPR spectrum consistent with a stable dihydroxyphenylalanine (DOPA) radical. The protein mechanoradicals, as a yet undiscovered source of oxidative stress, finally convert into hydrogen peroxide. Our study suggests collagen I to have evolved as a radical sponge against mechano-oxidative damage and proposes a mechanism for exercise-induced oxidative stress and redox-mediated pathophysiological processes.
Asunto(s)
Colágeno/química , Tendones/química , Animales , Materiales Biocompatibles/química , Biopolímeros/química , Dihidroxifenilalanina/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Oxidación-Reducción , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/químicaRESUMEN
Focal adhesion kinase (FAK) is a key signaling molecule regulating cell adhesion, migration, and survival. FAK localizes into focal adhesion complexes formed at the cytoplasmic side of cell attachment to the ECM and is activated after force generation via actomyosin fibers attached to this complex. The mechanism of translating mechanical force into a biochemical signal is not understood, and it is not clear whether FAK is activated directly by force or downstream to the force signal. We use experimental and computational single-molecule force spectroscopy to probe the mechanical properties of FAK and examine whether force can trigger activation by inducing conformational changes in FAK. By comparison with an open and active mutant of FAK, we are able to assign mechanoactivation to an initial rupture event in the low-force range. This activation event occurs before FAK unfolding at forces within the native range in focal adhesions. We are also able to assign all subsequent peaks in the force landscape to partial unfolding of FAK modules. We show that binding of ATP stabilizes the kinase domain, thereby altering the unfolding hierarchy. Using all-atom molecular dynamics simulations, we identify intermediates along the unfolding pathway, which provide buffering to allow extension of FAK in focal adhesions without compromising functionality. Our findings strongly support that forces in focal adhesions applied to FAK via known interactions can induce conformational changes, which in turn, trigger focal adhesion signaling.
Asunto(s)
Adenosina Trifosfato/química , Proteínas Aviares/química , Proteína-Tirosina Quinasas de Adhesión Focal/química , Simulación de Dinámica Molecular , Desplegamiento Proteico , Adenosina Trifosfato/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos , Activación Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/enzimología , Adhesiones Focales/genética , Mecanotransducción Celular/genética , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
The interactions of intrinsically disordered proteins (IDPs) with their molecular targets are essential for the regulation of many cellular processes. IDPs can perform their functions while disordered, and they may fold to structured conformations on binding. Here we show that the cis/trans isomerization of peptidyl-prolyl bonds can have a pronounced effect on the interactions of IDPs. By single-molecule spectroscopy, we identify a conserved proline residue in NCBD (the nuclear-coactivator binding domain of CBP) whose cis/trans isomerization in the unbound state modulates the association and dissociation rates with its binding partner, ACTR. As a result, NCBD switches on a time scale of tens of seconds between two populations that differ in their affinities to ACTR by about an order of magnitude. Molecular dynamics simulations indicate as a cause reduced packing of the complex for the cis isomer. Peptidyl-prolyl cis/trans isomerization may be an important previously unidentified mechanism for regulating IDP interactions.