Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 34(6): ar63, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37017483

RESUMEN

During cell division, the microtubule nucleating and organizing organelle, known as the centrosome, is a critical component of the mitotic spindle. In cells with two centrosomes, each centrosome functions as an anchor point for microtubules, leading to the formation of a bipolar spindle and progression through a bipolar cell division. When extra centrosomes are present, multipolar spindles form and the parent cell may divide into more than two daughter cells. Cells that are born from multipolar divisions are not viable, and hence clustering of extra centrosomes and progression to a bipolar division are critical determinants of viability in cells with extra centrosomes. We combine experimental approaches with computational modeling to define a role for cortical dynein in centrosome clustering. We show that centrosome clustering fails and multipolar spindles dominate when cortical dynein distribution or activity is experimentally perturbed. Our simulations further reveal that centrosome clustering is sensitive to the distribution of dynein on the cortex. Together, these results indicate that dynein's cortical localization alone is insufficient for effective centrosome clustering and, instead, dynamic relocalization of dynein from one side of the cell to the other throughout mitosis promotes timely clustering and bipolar cell division in cells with extra centrosomes.


Asunto(s)
Centrosoma , Dineínas , Dineínas/metabolismo , Centrosoma/metabolismo , Huso Acromático/metabolismo , Mitosis , Microtúbulos/metabolismo
2.
Nucleic Acids Res ; 50(12): 7048-7066, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736218

RESUMEN

DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.


Asunto(s)
MicroARNs , ARN Mensajero , MicroARNs/genética
3.
Biophys J ; 120(15): 3192-3210, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197801

RESUMEN

Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.


Asunto(s)
Dineínas , Huso Acromático , Segregación Cromosómica , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo
4.
J Vis Exp ; (151)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31589210

RESUMEN

Live cell time-lapse imaging is an important tool in cell biology that provides insight into cellular processes that might otherwise be overlooked, misunderstood, or misinterpreted by the fixed-cell analysis. While the fixed cell imaging and analysis is robust and sufficient to observe cellular steady-state, it can be limited in defining a temporal order of events at the cellular level and is ill-equipped to assess the transient nature of dynamic processes including mitotic progression. In contrast, live cell imaging is an eloquent tool that can be used to observe cellular processes at the single-cell level over time and has the capacity to capture the dynamics of processes that would otherwise be poorly represented in fixed cell imaging. Here we describe an approach to generate cells carrying fluorescently labeled markers of chromatin and microtubules and their use in live cell imaging approaches to monitor metaphase chromosome alignment and mitotic exit. We describe imaging-based techniques to assess the dynamics of spindle formation and mitotic progression, including the identification of cells at various stages in mitosis, identification and tracking of mitotic defects, and analysis of spindle dynamics and mitotic cell fate following the treatment with mitotic inhibitors.


Asunto(s)
Metafase , Mitosis , Huso Acromático , Imagen de Lapso de Tiempo , Ciclo Celular , Linaje de la Célula , Cromatina , Cromosomas , Células HeLa , Humanos , Microtúbulos
5.
Oncotarget ; 10(17): 1649-1659, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30899434

RESUMEN

The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.

6.
Br J Pharmacol ; 175(7): 1017-1038, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29318594

RESUMEN

BACKGROUND AND PURPOSE: Rescue of F508del-cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the most common CF mutation, requires small molecules that overcome protein processing, stability and channel gating defects. Here, we investigate F508del-CFTR rescue by CFFT-004, a small molecule designed to independently correct protein processing and channel gating defects. EXPERIMENTAL APPROACH: Using CFTR-expressing recombinant cells and CF patient-derived bronchial epithelial cells, we studied CFTR expression by Western blotting and channel gating and stability with the patch-clamp and Ussing chamber techniques. KEY RESULTS: Chronic treatment with CFFT-004 improved modestly F508del-CFTR processing, but not its plasma membrane stability. By contrast, CFFT-004 rescued F508del-CFTR channel gating better than C18, an analogue of the clinically used CFTR corrector lumacaftor. Subsequent acute addition of CFFT-004, but not C18, potentiated F508del-CFTR channel gating. However, CFFT-004 was without effect on A561E-CFTR, a CF mutation with a comparable mechanism of CFTR dysfunction as F508del-CFTR. To investigate the mechanism of action of CFFT-004, we used F508del-CFTR revertant mutations. Potentiation by CFFT-004 was unaffected by revertant mutations, but correction was abolished by the revertant mutation G550E. These data suggest that correction, but not potentiation, by CFFT-004 might involve nucleotide-binding domain 1 of CFTR. CONCLUSIONS AND IMPLICATIONS: CFFT-004 is a dual-acting small molecule with independent corrector and potentiator activities that partially rescues F508del-CFTR in recombinant cells and native airway epithelia. The limited efficacy and potency of CFFT-004 suggests that combinations of small molecules targeting different defects in F508del-CFTR might be a more effective therapeutic strategy than a single agent.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Animales , Línea Celular , Membrana Celular/fisiología , Células Cultivadas , Cricetinae , Células Epiteliales/fisiología , Humanos , Activación del Canal Iónico , Ratones , Procesamiento Proteico-Postraduccional , Estabilidad Proteica
7.
SLAS Technol ; 22(3): 315-324, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28376702

RESUMEN

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.


Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Transcripción Genética/efectos de los fármacos , Técnicas Citológicas/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...