Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(10): e17529, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39400458

RESUMEN

Leaf respiratory carbon loss decreases independent of temperature as the night progresses. Detailed nighttime measurements needed to quantify cumulative respiratory carbon loss at night are challenging under both lab and field conditions. We provide a simple yet accurate approach to represent variation in nighttime temperature-independent leaf respiratory CO2 efflux in environments with both stable and fluctuating temperatures, which requires no detailed measurements throughout the night. We demonstrate that the inter- and intraspecific variation in the cumulative leaf respiratory CO2 efflux at constant temperature, at any length of night, scales linearly with the inter- and intraspecific variation in initial measurement of leaf respiratory CO2 efflux at the same temperature at the beginning of the night. This approach informs large-scale predictions of cumulative leaf respiratory CO2 efflux, which is needed to understand plant carbon economy in global change studies as well as in global modeling and eddy covariance monitoring of the land-atmosphere exchange of CO2.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Temperatura , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Hojas de la Planta/metabolismo , Cambio Climático
2.
New Phytol ; 243(1): 23-28, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600045

RESUMEN

The temperature sensitivity (e.g. Q10) of night-time leaf respiratory CO2 efflux (RCO2) is a fundamental aspect of leaf physiology. The Q10 typically exhibits a dependence on measurement temperature, and it is speculated that this is due to temperature-dependent shifts in the relative control of leaf RCO2. Two decades ago, a review hypothesized that this mechanistically caused change in values of Q10 is predictable across plant taxa and biomes. Here, we discuss the most appropriate measuring protocol among existing data and for future data collection, to form the foundation of a future mechanistic understanding of Q10 of leaf RCO2 at different temperature ranges. We do this primarily via a review of existing literature on Q10 of night-time RCO2 and only supplement this to a lesser degree with our own original data. Based on mechanistic considerations, we encourage that instantaneous Q10 of leaf RCO2 to represent night-time should be measured: only at night-time; only in response to short-term narrow temperature variation (e.g. max. 10°C) to represent a given midpoint temperature at a time; in response to as many temperatures as possible within the chosen temperature range; and on still attached leaves.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Temperatura , Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Respiración de la Célula , Oscuridad
3.
Plant Cell Environ ; 47(3): 731-750, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047584

RESUMEN

Tropical montane forests (TMFs) are biodiversity hotspots and provide vital ecosystem services, but they are disproportionately vulnerable to climate warming. In the Andes, cold-affiliated species from high elevations are being displaced at the hot end of their thermal distributions by warm-affiliated species migrating upwards from lower elevations, leading to compositional shifts. Leaf functional traits are strong indicators of plant performance and at the community level have been shown to vary along elevation gradients, reflecting plant adaptations to different environmental niches. However, the plastic response of such traits to relatively rapid temperature change in Andean TMF species remains unknown. We used three common garden plantations within a thermosequence in the Colombian Andes to investigate the warming and cooling responses of key leaf functional traits in eight cold- and warm-affiliated species with variable thermal niches. Cold-affiliated species shifted their foliar nutrient concentrations when exposed to warming, while all other traits did not significantly change; contrastingly, warm-affiliated species were able to adjust structural, nutrient and water-use efficiency traits from acquisitive to conservative strategies in response to cooling. Our findings suggest that cold-affiliated species will struggle to acclimate functional traits to warming, conferring warm-affiliated species a competitive advantage under climate change.


Asunto(s)
Ecosistema , Árboles , Árboles/fisiología , Clima Tropical , Bosques , Hojas de la Planta/fisiología
4.
Funct Plant Biol ; 50(12): 1073-1085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37899004

RESUMEN

Tropospheric ozone (O3 ) is a global air pollutant that adversely affects plant growth. Whereas the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). To address this, we exposed Australia's major banana cultivar, Williams, to a range of [O3 ] in open top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in three traits that are hypothesised to shape responses to O3 : (1) leaf mass per area; (2) intrinsic water use efficiency; and (3) total antioxidant capacity. We show that O3 exposure had a significant effect on the biomass of cv. Williams, with significant reductions in both pseudostem and sucker biomass with increasing [O3 ]. This was accompanied by a significant increase in total antioxidant capacity and phenolic concentrations in older, but not younger, leaves, indicating the importance of cumulative O3 exposure. Using the observed trait diversity, we projected O3 tolerance among the 46 Musa lines growing in the common garden. Of these, cv. Williams ranked as one of the most O3 -tolerant cultivars. This suggests that other genetic lines could be even more susceptible, with implications for banana production and food security throughout the tropics.


Asunto(s)
Musa , Ozono , Antioxidantes , Ozono/toxicidad , Hojas de la Planta , Productos Agrícolas
5.
New Phytol ; 238(6): 2329-2344, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36987979

RESUMEN

Climate warming is causing compositional changes in Andean tropical montane forests (TMFs). These shifts are hypothesised to result from differential responses to warming of cold- and warm-affiliated species, with the former experiencing mortality and the latter migrating upslope. The thermal acclimation potential of Andean TMFs remains unknown. Along a 2000 m Andean altitudinal gradient, we planted individuals of cold- and warm-affiliated species (under common soil and irrigation), exposing them to the hot and cold extremes of their thermal niches, respectively. We measured the response of net photosynthesis (Anet ), photosynthetic capacity and leaf dark respiration (Rdark ) to warming/cooling, 5 months after planting. In all species, Anet and photosynthetic capacity at 25°C were highest when growing at growth temperatures (Tg ) closest to their thermal means, declining with warming and cooling in cold-affiliated and warm-affiliated species, respectively. When expressed at Tg , photosynthetic capacity and Rdark remained unchanged in cold-affiliated species, but the latter decreased in warm-affiliated counterparts. Rdark at 25°C increased with temperature in all species, but remained unchanged when expressed at Tg . Both species groups acclimated to temperature, but only warm-affiliated species decreased Rdark to photosynthetic capacity ratio at Tg as temperature increased. This could confer them a competitive advantage under future warming.


Asunto(s)
Fotosíntesis , Árboles , Árboles/fisiología , Temperatura , Fotosíntesis/fisiología , Aclimatación/fisiología , Respiración , Hojas de la Planta/fisiología
6.
Nat Commun ; 13(1): 5650, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163192

RESUMEN

Most biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness. Temperature controls less than half of the total nocturnal variation in respiration. A new universal formulation is developed to model and understand nocturnal plant respiration, combining the nocturnal decrease in the rate of plant respiration at constant temperature with the decrease in plant respiration according to the temperature sensitivity. Application of the new formulation shows a global reduction of 4.5 -6 % in plant respiration and an increase of 7-10% in net primary production for the present-day.


Asunto(s)
Hojas de la Planta , Plantas , Dióxido de Carbono , Ecosistema , Respiración , Temperatura , Árboles
7.
Nature ; 608(7923): 558-562, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948632

RESUMEN

The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.


Asunto(s)
Cambio Climático , Fósforo , Bosque Lluvioso , Suelo , Árboles , Clima Tropical , Aclimatación , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Secuestro de Carbono , Cationes/metabolismo , Cationes/farmacología , Cambio Climático/estadística & datos numéricos , Modelos Biológicos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fósforo/metabolismo , Fósforo/farmacología , Suelo/química , Árboles/efectos de los fármacos , Árboles/metabolismo , Incertidumbre
8.
Proc Natl Acad Sci U S A ; 119(20): e2101186119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533276

RESUMEN

Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate­fire­carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO2 emissions at today's levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate­carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.


Asunto(s)
Incendios , Calentamiento Global , Carbono , Dióxido de Carbono , Cambio Climático , Demografía , Ecosistema , Humanos
9.
Glob Chang Biol ; 27(9): 1802-1819, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565692

RESUMEN

Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia-along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%-30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%-15% of incoming solar radiation, compared to 0.15%-0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (Rn ), the key driver of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn ), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation-atmosphere exchange and reduce uncertainty of regional and global biogeochemical models.


Asunto(s)
Ecosistema , Agua , Brasil , Bosques , Estaciones del Año
10.
New Phytol ; 230(1): 116-128, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33341935

RESUMEN

Soil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) is often considered the main limiting nutrient for plants. However, support for the P paradigm is limited, and N and cations might also control tropical forests functioning. We used a large-scale experiment to determine how the factorial addition of nitrogen (N), P and cations affected root productivity and traits related to nutrient acquisition strategies (morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and nutrient contents) in a primary rainforest growing on low-fertility soils in Central Amazonia after 1 yr of fertilisation. Multiple root traits and productivity were affected. Phosphorus additions increased annual root productivity and root diameter, but decreased root phosphatase activity. Cation additions increased root productivity at certain times of year, also increasing root diameter and mycorrhizal colonisation. P and cation additions increased their element concentrations in root tissues. No responses were detected with N addition. Here we showed that rock-derived nutrients determined root functioning in low-fertility Amazonian soils, demonstrating not only the hypothesised importance of P, but also highlighting the role of cations. The changes in fine root traits and productivity indicated that even slow-growing tropical rainforests can respond rapidly to changes in resource availability.


Asunto(s)
Fósforo , Clima Tropical , Cationes , Bosques , Nitrógeno/análisis , Raíces de Plantas/química , Suelo , Árboles
11.
New Phytol ; 222(2): 768-784, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30597597

RESUMEN

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.


Asunto(s)
Aclimatación/fisiología , Fotosíntesis/fisiología , Plantas/metabolismo , Temperatura , Aclimatación/efectos de los fármacos , Dióxido de Carbono/farmacología , Respiración de la Célula/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Modelos Lineales , Modelos Biológicos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Plantas/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/metabolismo
12.
New Phytol ; 218(4): 1462-1477, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29635689

RESUMEN

Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO2 .


Asunto(s)
Carbono/metabolismo , Geografía , Fotosíntesis , Temperatura , Dióxido de Carbono/metabolismo , Simulación por Computador , Ecosistema , Luz , Modelos Teóricos , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Suelo , Factores de Tiempo
13.
Nat Commun ; 8(1): 1602, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150610

RESUMEN

Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (R d) and temperature dependencies. This allows characterisation of baseline R d, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates R d to whole-plant respiration R p, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline R d increases R p and especially in the tropics. Compared to new baseline, revised instantaneous response decreases R p for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new R d estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how R d aggregates to whole-plant respiration. Our analysis suggests R p could be around 30% higher than existing estimates.


Asunto(s)
Cambio Climático , Consumo de Oxígeno , Plantas/metabolismo , Árboles/metabolismo , Aclimatación , Atmósfera , Biomasa , Dióxido de Carbono/metabolismo , Clima , Geografía , Calentamiento Global , Modelos Teóricos , Oxígeno/metabolismo , Fotosíntesis , Temperatura
14.
Atmos Chem Phys ; 17(23): 14785-14810, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32647529

RESUMEN

Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27% in the gross primary productivity of Amazonia and 10% in plant respiration as well as a decline in soil respiration of 3%. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50% between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere.

15.
New Phytol ; 213(1): 22-42, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27891647

RESUMEN

Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO2 assimilation (A) to key environmental variables: light, temperature, CO2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models.


Asunto(s)
Planeta Tierra , Modelos Biológicos , Fotosíntesis , Ecosistema , Hojas de la Planta/fisiología , Presión de Vapor
16.
Sci Rep ; 6: 30294, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27461560

RESUMEN

The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.

17.
Glob Chang Biol ; 21(12): 4303-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25940760

RESUMEN

The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO2 (eCa ) will increase with rising temperature and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eCa experiments by carrying out two meta-analyses. Firstly, we tested for an interaction effect on growth responses in factorial eCa  × temperature experiments. This analysis showed a positive, but nonsignificant interaction effect (95% CI for above-ground biomass response = -0.8, 18.0%) between eCa and temperature. Secondly, we tested field-based eCa experiments on woody plants across the globe for a relationship between the eCa effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but nonsignificant correlation between the eCa response and MAT. The magnitude of the interactions between CO2 and temperature found in both meta-analyses were consistent with model predictions, even though both analyses gave nonsignificant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction vs. an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction.


Asunto(s)
Dióxido de Carbono/metabolismo , Modelos Teóricos , Árboles/crecimiento & desarrollo , Biomasa , Bosques , Fotosíntesis , Temperatura
18.
New Phytol ; 206(2): 614-36, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25581061

RESUMEN

Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Aclimatación , Respiración de la Célula , Clima , Modelos Teóricos , Fenotipo , Fotosíntesis , Hojas de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Temperatura
19.
Glob Chang Biol ; 18(9): 2882-98, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501065

RESUMEN

A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a lack of forest vegetation, indicating a need for better parameterization of the responses of cloud forest vegetation within the model. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. Upper montane forests were predicted to allocate ~50% of carbon fixation to biomass maintenance and growth, despite available measurements showing that they only allocate ~33%. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes, which is not yet well represented in current vegetation models.

20.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3316-29, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22006971

RESUMEN

The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.


Asunto(s)
Carbono/química , Modelos Biológicos , Fotosíntesis , Hojas de la Planta/química , Árboles/química , Atmósfera/química , Brasil , Dióxido de Carbono/química , Simulación por Computador , Nitrógeno/química , Fósforo/química , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Suelo/química , Árboles/crecimiento & desarrollo , Clima Tropical , Madera/química , Madera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...