Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 18500, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323732

RESUMEN

The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ligandos , Proteínas de la Nucleocápside/genética , ARN/metabolismo , Antivirales/farmacología , Unión Proteica
2.
ACS Pharmacol Transl Sci ; 4(6): 1849-1866, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927015

RESUMEN

The glutaminase (GLS) enzyme hydrolyzes glutamine into glutamate, an important anaplerotic source for the tricarboxylic acid cycle in rapidly growing cancer cells under the Warburg effect. Glutamine-derived α-ketoglutarate is also an important cofactor of chromatin-modifying enzymes, and through epigenetic changes, it keeps cancer cells in an undifferentiated state. Moreover, glutamate is an important neurotransmitter, and deregulated glutaminase activity in the nervous system underlies several neurological disorders. Given the proven importance of glutaminase for critical diseases, we describe the development of a new coupled enzyme-based fluorescent glutaminase activity assay formatted for 384-well plates for high-throughput screening (HTS) of glutaminase inhibitors. We applied the new methodology to screen a ∼30,000-compound library to search for GLS inhibitors. The HTS assay identified 11 glutaminase inhibitors as hits that were characterized by in silico, biochemical, and glutaminase-based cellular assays. A structure-activity relationship study on the most promising hit (C9) allowed the discovery of a derivative, C9.22, with enhanced in vitro and cellular glutaminase-inhibiting activity. In summary, we discovered a new glutaminase inhibitor with an innovative structural scaffold and described the molecular determinants of its activity.

3.
J Biol Chem ; 296: 100658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33857480

RESUMEN

Gram-negative bacteria are responsible for a variety of human, animal, and plant diseases. The spread of multidrug-resistant Gram-negative bacteria poses a challenge to disease control and highlights the need for novel antimicrobials. Owing to their critical role in protein synthesis, aminoacyl-tRNA synthetases, including the methionyl-tRNA synthetases MetRS1 and MetRS2, are attractive drug targets. MetRS1 has long been exploited as a drug target in Gram-positive bacteria and protozoan parasites. However, MetRS1 inhibitors have limited action upon Gram-negative pathogens or on Gram-positive bacteria that produce MetRS2 enzymes. The underlying mechanism by which MetRS2 enzymes are insensitive to MetRS1 inhibitors is presently unknown. Herein, we report the first structures of MetRS2 from a multidrug-resistant Gram-negative bacterium in its ligand-free state and bound to its substrate or MetRS1 inhibitors. The structures reveal the binding mode of two diaryldiamine MetRS1 inhibitors that occupy the amino acid-binding site and a surrounding auxiliary pocket implicated in tRNA acceptor arm binding. The structural features associated with amino acid polymorphisms found in the methionine and auxiliary pockets reveal the molecular basis for diaryldiamine binding and selectivity between MetRS1 and MetRS2 enzymes. Moreover, we show that mutations in key polymorphic residues in the methionine and auxiliary pockets not only altered inhibitor binding affinity but also significantly reduced enzyme function. Our findings thus reinforce the tRNA acceptor arm binding site as a druggable pocket in class I aminoacyl-tRNA synthetases and provide a structural basis for optimization of MetRS2 inhibitors for the development of new antimicrobials against Gram-negative pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metionina-ARNt Ligasa/metabolismo , Fenilendiaminas/farmacología , ARN de Transferencia/metabolismo , Xanthomonas campestris/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Metionina-ARNt Ligasa/antagonistas & inhibidores , Fenilendiaminas/química , Biosíntesis de Proteínas , Homología de Secuencia , Especificidad por Sustrato
4.
Mol Plant Pathol ; 20(8): 1105-1118, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115151

RESUMEN

Poly(A) tail shortening is a critical step in messenger RNA (mRNA) decay and control of gene expression. The carbon catabolite repressor 4 (CCR4)-associated factor 1 (CAF1) component of the CCR4-NOT deadenylase complex plays an essential role in mRNA deadenylation in most eukaryotes. However, while CAF1 has been extensively investigated in yeast and animals, its role in plants remains largely unknown. Here, we show that the Citrus sinensis CAF1 (CsCAF1) is a magnesium-dependent deadenylase implicated in resistance against the citrus canker bacteria Xanthomonas citri. CsCAF1 interacted with proteins of the CCR4-NOT complex, including CsVIP2, a NOT2 homologue, translin-associated factor X (CsTRAX) and the poly(A)-binding proteins CsPABPN and CsPABPC. CsCAF1 also interacted with PthA4, the main X. citri effector required for citrus canker elicitation. We also present evidence suggesting that PthA4 inhibits CsCAF1 deadenylase activity in vitro and stabilizes the mRNA encoded by the citrus canker susceptibility gene CsLOB1, which is transcriptionally activated by PthA4 during canker formation. Moreover, we show that an inhibitor of CsCAF1 deadenylase activity significantly enhanced canker development, despite causing a reduction in PthA4-dependent CsLOB1 transcription. These results thus link CsCAF1 with canker development and PthA4-dependent transcription in citrus plants.


Asunto(s)
Citrus sinensis/enzimología , Citrus sinensis/microbiología , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Citrus sinensis/genética , Citrus sinensis/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Magnesio/farmacología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Poli A/metabolismo , Unión Proteica/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Estabilidad del ARN/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Xanthomonas/fisiología
5.
Sci Rep ; 9(1): 3901, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846791

RESUMEN

Salicylic acid (SA) and its methyl ester, methyl salicylate (MeSA) are well known inducers of local and systemic plant defense responses, respectively. MeSA is a major mediator of systemic acquired resistance (SAR) and its conversion back into SA is thought to be required for SAR. In many plant species, conversion of MeSA into SA is mediated by MeSA esterases of the SABP2 family. Here we show that the Citrus sinensis SABP2 homologue protein CsMES1 catalyzes the hydrolysis of MeSA into SA. Molecular modeling studies suggest that CsMES1 shares the same structure and SA-binding mode with tobacco SABP2. However, an amino acid polymorphism in the active site of CsMES1-related proteins suggested an important role in enzyme regulation. We present evidence that the side chain of this polymorphic residue directly influences enzyme activity and SA binding affinity in CsMES proteins. We also show that SA and CsMES1 transcripts preferentially accumulate during the incompatible interaction between Xanthomonas aurantifolii pathotype C and sweet orange plants. Moreover, we demonstrate that SA and MeSA inhibited citrus canker caused by Xanthomonas citri, whereas an inhibitor of CsMES1 enhanced canker formation, suggesting that CsMES1 and SA play a role in the local defense against citrus canker bacteria.


Asunto(s)
Citrus sinensis/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Salicilatos/metabolismo , Resistencia a la Enfermedad , Relación Estructura-Actividad
6.
Sci Rep ; 8(1): 11988, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097648

RESUMEN

Adenosine Kinase (ADK) regulates the cellular levels of adenosine (ADO) by fine-tuning its metabolic clearance. The transfer of γ-phosphate from ATP to ADO by ADK involves regulation by the substrates and products, as well as by Mg2+ and inorganic phosphate. Here we present new crystal structures of mouse ADK (mADK) binary (mADK:ADO; 1.2 Å) and ternary (mADK:ADO:ADP; 1.8 Å) complexes. In accordance with the structural demonstration of ADO occupancy of the ATP binding site, kinetic studies confirmed a competitive model of auto-inhibition of ADK by ADO. In the ternary complex, a K+ ion is hexacoordinated between loops adjacent to the ATP binding site, where Asp310 connects the K+ coordination sphere to the ATP binding site through an anion hole structure. Nuclear Magnetic Resonance 2D 15N-1H HSQC experiments revealed that the binding of K+ perturbs Asp310 and residues of adjacent helices 14 and 15, engaging a transition to a catalytically productive structure. Consistent with the structural data, the mutants D310A and D310P are catalytically deficient and loose responsiveness to K+. Saturation Transfer Difference spectra of ATPγS provided evidence for an unfavorable interaction of the mADK D310P mutant for ATP. Reductions in K+ concentration diminish, whereas increases enhance the in vitro activity of mADK (maximum of 2.5-fold; apparent Kd = 10.4 mM). Mechanistically, K+ increases the catalytic turnover (Kcat) but does not affect the affinity of mADK for ADO or ATP. Depletion of intracellular K+ inhibited, while its restoration was accompanied by a full recovery of cellular ADK activity. Together, this novel dataset reveals the molecular basis of the allosteric activation of ADK by K+ and highlights the role of ADK in connecting depletion of intracellular K+ to the regulation of purine metabolism.


Asunto(s)
Adenosina Quinasa/metabolismo , Redes y Vías Metabólicas , Potasio/metabolismo , Purinas/metabolismo , Adenosina Quinasa/química , Adenosina Quinasa/genética , Aminoácidos , Sitios de Unión , Activación Enzimática , Cinética , Imagen por Resonancia Magnética , Conformación Molecular , Mutación , Fosforilación , Unión Proteica , Purinas/química , Relación Estructura-Actividad
7.
Appl Microbiol Biotechnol ; 101(12): 4935-4949, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28331945

RESUMEN

Esterases catalyze the cleavage and formation of ester bonds and are members of the diverse family of α/ß hydrolase fold. They are useful in industries from different sectors, such as food, detergent, fine chemicals, and biofuel production. In a previous work, 30 positive clones for lipolytic activity were identified from a metagenomic library of a microbial consortium specialized in diesel oil degradation. In this study, a putative gene encoding an esterase/lipase, denominated est8, has been cloned and the corresponding protein expressed recombinantly, purified to homogeneity and characterized functional and structurally. We show that the protein codified by est8 gene, denominated Est8, is an alkaline esterase with high catalytic efficiency against p-nitrophenyl acetate and stable in the presence of up to 10% dimethyl sulfoxide. The three-dimensional structure of Est8 was determined at 1.85-Ǻ resolution, allowing the characterization of the substrate-binding pocket and features that rationalize the preference of Est8 for short-chain substrates. In an attempt to increase the size of ligand-binding pocket and enzyme activity against distinct substrates of long chain, we mutated two residues (Met213 and Phe217) that block the substrate channel. A small increase in the reaction velocity for p-nitrophenyl butyrate and p-nitrophenyl valerate hydrolysis was observed. Activity against p-nitrophenyl acetate was reduced. The functional and structural characterization of Est8 is explored in comparison with orthologues.


Asunto(s)
Esterasas/química , Esterasas/metabolismo , Metagenómica , Consorcios Microbianos/genética , Butiratos/metabolismo , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Esterasas/genética , Esterasas/aislamiento & purificación , Biblioteca de Genes , Concentración de Iones de Hidrógeno , Hidrólisis , Lipasa/genética , Lipasa/aislamiento & purificación , Lipasa/metabolismo , Lipólisis , Nitrofenoles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
8.
PLoS One ; 10(7): e0133723, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26214846

RESUMEN

Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes.


Asunto(s)
Biodegradación Ambiental , Esterasas/metabolismo , Gasolina , Metagenómica , Consorcios Microbianos , Estabilidad de Enzimas , Esterasas/química , Esterasas/clasificación , Esterasas/genética , Biblioteca de Genes , Concentración de Iones de Hidrógeno , Cinética , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Consorcios Microbianos/genética , Modelos Moleculares , Filogenia , Conformación Proteica , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...