Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 892, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152166

RESUMEN

Next-generation sequencing (NGS) has revolutionized genomic research by enabling high-throughput, cost-effective genome and transcriptome sequencing accelerating personalized medicine for complex diseases, including cancer. Whole genome/transcriptome sequencing (WGS/WTS) provides comprehensive insights, while targeted sequencing is more cost-effective and sensitive. In comparison to short-read sequencing, which still dominates the field due to high speed and cost-effectiveness, long-read sequencing can overcome alignment limitations and better discriminate similar sequences from alternative transcripts or repetitive regions. Hybrid sequencing combines the best strengths of different technologies for a more comprehensive view of genomic/transcriptomic variations. Understanding each technology's strengths and limitations is critical for translating cutting-edge technologies into clinical applications. In this study, we sequenced DNA and RNA libraries of reference samples using various targeted DNA and RNA panels and the whole transcriptome on both short-read and long-read platforms. This study design enables a comprehensive analysis of sequencing technologies, targeting protocols, and library preparation methods. Our expanded profiling landscape establishes a reference point for assessing current sequencing technologies, facilitating informed decision-making in genomic research and precision medicine.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , RNA-Seq , Análisis de Secuencia de ADN/métodos , Transcriptoma , Análisis de Secuencia de ARN , Medicina de Precisión
2.
Cells ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195281

RESUMEN

Neurons are central to lifelong learning and memory, but ageing disrupts their morphology and function, leading to cognitive decline. Although epigenetic mechanisms are known to play crucial roles in learning and memory, neuron-specific genome-wide epigenetic maps into old age remain scarce, often being limited to whole-brain homogenates and confounded by glial cells. Here, we mapped H3K4me3, H3K27ac, and H3K27me3 in mouse neurons across their lifespan. This revealed stable H3K4me3 and global losses of H3K27ac and H3K27me3 into old age. We observed patterns of synaptic function gene deactivation, regulated through the loss of the active mark H3K27ac, but not H3K4me3. Alongside this, embryonic development loci lost repressive H3K27me3 in old age. This suggests a loss of a highly refined neuronal cellular identity linked to global chromatin reconfiguration. Collectively, these findings indicate a key role for epigenetic regulation in neurons that is inextricably linked with ageing.


Asunto(s)
Envejecimiento , Epigénesis Genética , Histonas , Neuronas , Animales , Histonas/metabolismo , Envejecimiento/metabolismo , Neuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Cromatina/metabolismo , Masculino
3.
Cell Genom ; 3(11): 100379, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020977

RESUMEN

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.

4.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596869

RESUMEN

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética
6.
Cell Rep ; 38(12): 110546, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320727

RESUMEN

Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.


Asunto(s)
Miedo , ARN Largo no Codificante , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Corteza Prefrontal/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
Genome Biol ; 23(1): 68, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241127

RESUMEN

Structural variants (SVs) are a major source of human genetic diversity and have been associated with different diseases and phenotypes. The detection of SVs is difficult, and a diverse range of detection methods and data analysis protocols has been developed. This difficulty and diversity make the detection of SVs for clinical applications challenging and requires a framework to ensure accuracy and reproducibility. Here, we discuss current developments in the diagnosis of SVs and propose a roadmap for the accurate and reproducible detection of SVs that includes case studies provided from the FDA-led SEquencing Quality Control Phase II (SEQC-II) and other consortium efforts.


Asunto(s)
Variación Estructural del Genoma , Fenotipo , Reproducibilidad de los Resultados
8.
Cell Rep Methods ; 1(7): 100106, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-35475002

RESUMEN

The primary objective of the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) project is to develop standard analysis protocols and quality control metrics for use in DNA testing to enhance scientific research and precision medicine. This study reports a targeted next-generation sequencing (NGS) method that will enable more accurate detection of actionable mutations in circulating tumor DNA (ctDNA) clinical specimens. To accomplish this, a synthetic internal standard spike-in was designed for each actionable mutation target, suitable for use in NGS following hybrid capture enrichment and unique molecular index (UMI) or non-UMI library preparation. When mixed with contrived ctDNA reference samples, internal standards enabled calculation of technical error rate, limit of blank, and limit of detection for each variant at each nucleotide position in each sample. True-positive mutations with variant allele fraction too low for detection by current practice were detected with this method, thereby increasing sensitivity.


Asunto(s)
ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina de Precisión/métodos , Control de Calidad
9.
Am J Hum Genet ; 101(2): 255-266, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777932

RESUMEN

Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 11/genética , Ciclina D1/genética , Reparación del ADN/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Elementos de Facilitación Genéticos/genética , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Células MCF-7 , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/genética
10.
Cell Rep ; 5(3): 839-48, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24183674

RESUMEN

Human mitochondrial DNA is transcribed as long polycistronic transcripts that encompass each strand of the genome and are processed subsequently into mature mRNAs, tRNAs, and rRNAs, necessitating widespread posttranscriptional regulation. Here, we establish methods for massively parallel sequencing and analyses of RNase-accessible regions of human mitochondrial RNA and thereby identify specific regions within mitochondrial transcripts that are bound by proteins. This approach provides a range of insights into the contribution of RNA-binding proteins to the regulation of mitochondrial gene expression.


Asunto(s)
Huella de Proteína/métodos , ARN/metabolismo , Ribonucleasas/metabolismo , Regulación de la Expresión Génica , Humanos , ARN/genética , ARN Mitocondrial , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasas/genética , Transcripción Genética
11.
Wiley Interdiscip Rev RNA ; 3(5): 675-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22777840

RESUMEN

The human mitochondrial transcriptome, although produced from a small and compact genome, has revealed surprising complexity in its composition and regulation. Wide variation between individual tRNAs, mRNAs, and rRNAs indicate the importance of post-transcriptional processing, maturation, and degradation mechanisms in the regulation of mitochondrial gene expression. RNA-binding proteins play essential roles in controlling the mitochondrial transcriptome from its synthesis to its destruction and have evolved unique features to complement the unusual features of mitochondrial RNAs. Recent studies have shown how changes in mitochondrial RNAs and their binding proteins can have significant effects on human health. This opens new avenues for investigation of mitochondrial RNA-binding proteins and the mechanisms by which they regulate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias/genética , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Humanos , Estabilidad del ARN , Transcripción Genética
12.
Nat Struct Mol Biol ; 17(8): 1030-4, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20622877

RESUMEN

We have recently shown that transcription initiation RNAs (tiRNAs) are derived from sequences immediately downstream of transcription start sites. Here, using cytoplasmic and nuclear small RNA high-throughput sequencing datasets, we report the identification of a second class of nuclear-specific approximately 17- to 18-nucleotide small RNAs whose 3' ends map precisely to the splice donor site of internal exons in animals. These splice-site RNAs (spliRNAs) are associated with highly expressed genes and show evidence of developmental stage- and region-specific expression. We also show that tiRNAs are localized to the nucleus, are enriched at chromatin marks associated with transcription initiation and possess a 3'-nucleotide bias. Additionally, we find that microRNA-offset RNAs (moRNAs), the miR-15/16 cluster previously linked to oncosuppression and most small nucleolar RNA (snoRNA)-derived small RNAs (sdRNAs) are enriched in the nucleus, whereas most miRNAs and two H/ACA sdRNAs are cytoplasmically enriched. We propose that nuclear-localized tiny RNAs are involved in the epigenetic regulation of gene expression.


Asunto(s)
Núcleo Celular/genética , Sitios de Empalme de ARN/genética , Transporte de ARN/genética , ARN/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Línea Celular , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Granulocitos/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , ARN/genética , ARN Nucleolar Pequeño/metabolismo , Fracciones Subcelulares/metabolismo
13.
J Pathol ; 220(2): 126-39, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19882673

RESUMEN

For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI-interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein-coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease.


Asunto(s)
Enfermedad/genética , ARN no Traducido/genética , Animales , Biomarcadores de Tumor/genética , Regulación de la Expresión Génica/genética , Marcadores Genéticos , Humanos , MicroARNs/genética , Interferencia de ARN
14.
Brief Funct Genomic Proteomic ; 8(6): 407-23, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19770204

RESUMEN

Genome-wide analyses of the eukaryotic transcriptome have revealed that the majority of the genome is transcribed, producing large numbers of non-protein-coding RNAs (ncRNAs). This surprising observation challenges many assumptions about the genetic programming of higher organisms and how information is stored and organized within the genome. Moreover, the rapid advances in genomics have given little opportunity for biologists to integrate these emerging findings into their intellectual and experimental frameworks. This problem has been compounded by the perception that genome-wide studies often generate more questions than answers, which in turn has led to confusion and controversy. In this article, we address common questions associated with the phenomenon of pervasive transcription and consider the indices that can be used to evaluate the function (or lack thereof) of the resulting ncRNAs. We suggest that many lines of evidence, including expression profiles, conservation signatures, chromatin modification patterns and examination of increasing numbers of individual cases, argue in favour of the widespread functionality of non-coding transcription. We also discuss how informatic and experimental approaches used to analyse protein-coding genes may not be applicable to ncRNAs and how the general perception that protein-coding genes form the main informational output of the genome has resulted in much of the misunderstanding surrounding pervasive transcription and its potential significance. Finally, we present the conceptual implications of the majority of the eukaryotic genome being functional and describe how appreciating this perspective will provide considerable opportunity to further understand the molecular basis of development and complex diseases.


Asunto(s)
Células Eucariotas , Genoma , ARN no Traducido/genética , Transcripción Genética , Animales , Células Eucariotas/metabolismo , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/genética
15.
J Mol Endocrinol ; 40(4): 151-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18372404

RESUMEN

RNA is emerging as a major component of the regulatory circuitry that underpins the development and physiology of complex organisms. Here we review recent evidence that suggests that RNA may supplement endocrine and paracrine signaling by small molecules and proteins, and act as an efficient and evolutionarily flexible source of sequence-specific information transfer between cells, both locally and systemically. As such, RNA signaling may play a central but previously hidden role in multicellular ontogeny, homeostasis, and transmitted epigenetic memory.


Asunto(s)
Espacio Extracelular/metabolismo , Comunicación Paracrina , ARN/fisiología , Animales , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Células Germinativas/metabolismo , Humanos , Sistema Inmunológico/fisiología , Modelos Biológicos , ARN/inmunología , ARN/metabolismo , Transducción de Señal , Vesículas Transportadoras/metabolismo
16.
Proc Natl Acad Sci U S A ; 104(10): 3961-6, 2007 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17360460

RESUMEN

A genomic region on distal mouse chromosome 1 and its syntenic human counterpart 1q23-42 show strong evidence of harboring lupus susceptibility genes. We found evidence of linkage at 1q32.2 in a targeted genome scan of 1q21-43 in 126 lupus multiplex families containing 151 affected sibpairs (nonparametric linkage score 2.52, P = 0.006). A positional candidate gene at 1q32.2, complement receptor 2 (CR2), is also a candidate in the murine Sle1c lupus susceptibility locus. To explore its role in human disease, we analyzed 1,416 individuals from 258 Caucasian and 142 Chinese lupus simplex families and demonstrated that a common three-single-nucleotide polymorphism CR2 haplotype (rs3813946, rs1048971, rs17615) was associated with lupus susceptibility (P = 0.00001) with a 1.54-fold increased risk for the development of disease. Single-nucleotide polymorphism 1 (rs3813946), located in the 5' untranslated region of the CR2 gene, altered transcriptional activity, suggesting a potential mechanism by which CR2 could contribute to the development of lupus. Our findings reveal that CR2 is a likely susceptibility gene for human lupus at 1q32.2, extending previous studies suggesting that CR2 participates in the pathogenesis of systemic lupus erythematosus.


Asunto(s)
Haplotipos , Lupus Eritematoso Sistémico/etnología , Lupus Eritematoso Sistémico/genética , Receptores de Complemento 3d/genética , Pueblo Asiatico , China , Salud de la Familia , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Riesgo , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...