Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(33): 13371-13378, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116285

RESUMEN

Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Histidina , Estructuras Metalorgánicas , Hemina/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Histidina/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Colorimetría , Humanos , Catálisis , Materiales Biomiméticos/química
2.
Eur J Med Chem ; 276: 116641, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971047

RESUMEN

Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 µM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.


Asunto(s)
Enfermedad de Chagas , G-Cuádruplex , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Ligandos , Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Parasitaria , Antiparasitarios/farmacología , Antiparasitarios/química , Antiparasitarios/síntesis química
3.
Adv Sci (Weinh) ; : e2402237, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924304

RESUMEN

Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).

4.
Biochimie ; 225: 146-155, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821199

RESUMEN

The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.

5.
NAR Genom Bioinform ; 6(2): lqae060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817800

RESUMEN

Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.

6.
Int J Biol Macromol ; 270(Pt 1): 132244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729459

RESUMEN

To combat cancer, a comprehensive understanding of the molecular mechanisms and behaviors involved in carcinogenesis is crucial, as tumorigenesis is a complex process influenced by various genetic events and disease hallmarks. The B-MYB gene encodes a transcription factor involved in cell cycle regulation, survival, and differentiation in normal cells. B-MYB can be transformed into an oncogene through mutations, and abnormal expression of B-MYB has been identified in various cancers, including lung cancer, and is associated with poor prognosis. Targeting this oncogene is a promising approach for anti-cancer drug design. B-MYB has been deemed undruggable in previous reports, necessitating the search for novel therapeutic options. In this study, we found that the B-MYB gene promoter contains several G/C rich motifs compatible with G-quadruplex (G4) formation. We investigated and validated the existence of G4 structures in the promoter region of B-MYB, first in vitro using a combination of bioinformatics, biophysical, and biochemical methods, then in cell with the recently developed G4access method.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Regiones Promotoras Genéticas/genética , Humanos , Transactivadores/genética , Transactivadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Motivos de Nucleótidos/genética
7.
Nat Commun ; 15(1): 1992, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443388

RESUMEN

I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.


Asunto(s)
Azidas , Benzazepinas , Imagen por Resonancia Magnética , Humanos , Células HeLa , ADN , Anticuerpos
8.
Life Sci ; 340: 122481, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301873

RESUMEN

Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Neoplasias , Humanos , Ligandos , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
9.
Genome Res ; 34(2): 217-230, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38355305

RESUMEN

Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.


Asunto(s)
G-Cuádruplex , ARN Largo no Codificante , ARN , ARN Largo no Codificante/genética , Proteínas/genética
10.
ACS Omega ; 9(3): 4096-4101, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284014

RESUMEN

Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.

11.
Angew Chem Int Ed Engl ; 63(7): e202313226, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38143239

RESUMEN

DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes. Most notably, the formation of a stable so-called KNa-quadruplex (KNaQ) requires concurrent coordination of K+ and Na+ ions at two distinct binding sites. This structure provides novel insight into G-rich DNA folding under ionic conditions relevant to eukaryotic cell physiology and the structural evolution of telomeric DNA. It highlights the differences between the structural organization of human and nematode telomeric DNA, which should be considered when using C. elegans as a model in telomere biology, particularly in drug screening applications. Additionally, the absence/presence of KNaQ motifs in the host/parasite introduces an intriguing possibility of exploiting the KNaQ fold as a plausible antiparasitic drug target. The structure's unique shape and ion dependency and the possibility of controlling its folding by using low-molecular-weight ligands can be used for the design or discovery of novel recognition DNA elements and sensors.


Asunto(s)
G-Cuádruplex , Animales , Humanos , Caenorhabditis elegans/genética , ADN/química , Secuencia de Bases , Cationes , Telómero/genética
12.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100552

RESUMEN

G-rich sequences have the potential to fold into G-quadruplexes (GQs). G-quadruplexes, particularly those positioned in the regulatory regions of proto-oncogenes, have recently garnered attention in anti-cancer drug design. A thermal FRET assay was employed to conduct preliminary screening of various alkaloids, aiming to identify stronger interactions with a specific set of G-rich double-labeled oligonucleotides in both K + and Na + buffers. These oligonucleotides were derived from regions associated with Kit, Myc, Ceb, Bcl2, human telomeres, and potential G-quadruplex forming sequences found in the Nrf2 and Trf2 promoters. Palmatine generally increased the stability of different G-rich sequences into their folded GQ structures, more or less in a concentration dependent manner. The thermal stability and interaction of palmatine was further studied using transition FRET (t-FRET), CD and UV-visible spectroscopy and molecular dynamics simulation methods. Palmatine showed the strongest interaction with T RF2 in both K+ and Na+ buffers even at equimolar concentration ratio. T-FRET studies revealed that palmatine has the potential to disrupt double-strand formation by the T RF2 sequence in the presence of its complementary strand. Palmatine exhibits a stronger interaction with G-rich strand DNA, promoting its folding into G-quadruplex structures. It is noteworthy that palmatine exhibits the strongest interaction with T RF2, which is the shortest sequence among the G-rich oligonucleotides studied, featuring only one nucleotide for two of its loops. Palmatine represents a suitable structure for drug design to develop more specific ligands targeting G-quadruplexes. Whether palmatine can also affect the expression of the T RF2 gene requires further studies.Communicated by Ramaswamy H. Sarma.

13.
Drug Discov Today ; 28(12): 103808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38414431

RESUMEN

Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.


Asunto(s)
G-Cuádruplex , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ligandos
14.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38256866

RESUMEN

The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines 12 and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines 13 are reported here in six steps starting from various halogeno-quinazoline-2,4-(1H,3H)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines 12b, 12f, and 12i displayed the most interesting antiproliferative activities against six human cancer cell lines. In the series of quinoline derivatives, 6-phenyl-bis(3-dimethylaminopropyl)aminomethylphenylquinoline 13a proved to be the most active. G-quadruplexes (G4) stacked non-canonical nucleic acid structures found in specific G-rich DNA, or RNA sequences in the human genome are considered as potential targets for the development of anticancer agents. Then, as small aza-organic heterocyclic derivatives are well known to target and stabilize G4 structures, their ability to bind G4 structures have been determined through FRET melting, circular dichroism, and native mass spectrometry assays. Finally, telomerase inhibition ability has been also assessed using the MCF-7 cell line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...