Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686994

RESUMEN

Cashew nut shell liquid (CNSL), obtained as a byproduct of the cashew industry, represents an important natural source of phenolic compounds, with important environmental benefits due to the large availability and low cost of the unique renewable starting material, that can be used as an alternative to synthetic substances in many industrial applications. The peculiarity of the functional groups of CNSL components, such as phenolic hydroxyl, the aromatic ring, acid functionality, and unsaturation(s) in the C15 alkyl side chain, permitted the design of interesting nanostructures. Cardanol (CA), anacardic acid (AA), and cardol (CD), opportunely isolated from CNSL, served as building blocks for generating an amazing class of nanomaterials with chemical, physical, and morphological properties that can be tuned in view of their applications, particularly focused on their bioactive properties.

2.
Materials (Basel) ; 16(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570026

RESUMEN

Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals.

3.
Materials (Basel) ; 16(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903175

RESUMEN

An environmentally friendly procedure was adopted for the first time to prepare green iridium nanoparticles starting from grape marc extracts. Grape marcs, waste of Negramaro winery production, were subjected to aqueous thermal extraction at different temperatures (45, 65, 80, and 100 °C) and characterized in terms of total phenolic contents, reducing sugars, and antioxidant activity. The results obtained showed an important effect of temperature with higher amounts of polyphenols and reducing sugars and antioxidant activity in the extracts with the increase of temperature. All four extracts were used as starting materials to synthesize different iridium nanoparticles (Ir-NP1, Ir-NP2, Ir-NP3, and Ir-NP4) that were characterized by Uv-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. TEM analysis revealed the presence of very small particles in all samples with sizes in the range of 3.0-4.5 nm with the presence of a second fraction of larger nanoparticles (7.5-17.0 nm) for Ir-NPs prepared with extracts obtained at higher temperatures (Ir-NP3 and Ir-NP4). Since the wastewater remediation of toxic organic contaminants on catalytic reduction has gained much attention, the application of the prepared Ir-NPs as catalysts towards the reduction of methylene blue (MB), chosen as the organic dye model, was evaluated. The efficient catalytic activity of Ir-NPs in the reduction of MB by NaBH4 was demonstrated and Ir-NP2 was prepared using the extract obtained at 65 °C, showing the best catalytic performance, with a rate constant of 0.527 ± 0.012 min-1 and MB reduction of 96.1% in just six min, with stability for over 10 months.

4.
Materials (Basel) ; 16(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770098

RESUMEN

In this work, we developed a novel approach to purify [11C]Raclopride ([11C]RAC), an important positron emission tomography radiotracer, based on tailored shape-recognition polymers, with the aim to substitute single-pass HPLC purification with an in-flow trap & release process. Molecular imprinting technology (MIT) applied to solid phase extraction (MISPE) was investigated to develop a setting able to selectively extract [11C]RAC in a mixture containing a high amount of its precursor, (S)-O-Des-Methyl-Raclopride (DM-RAC). Two imprinted polymers selective for unlabeled RAC and DM-RAC were synthesized through a radical polymerization at 65 °C using methacrylic acid and trimethylolpropane trimethacrylate in the presence of template molecule (RAC or DM-RAC). The prepared polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and tested in MISPE experiments. The polymers were used in testing conditions, revealing a high retention capacity of RAC-MISPE to retain RAC either in the presence of similar concentrations of RAC and DM-RAC precursor (96.9%, RSD 6.6%) and in the presence of a large excess of precursor (90%, RSD 4.6%) in the loading solution. Starting from these promising results, preliminary studies for selective purification of [11C]Raclopride using this RAC-MISPE were performed and, while generally confirming the selectivity capacity of the polymer, revealed challenging applicability to the current synthetic process, mainly due to high backpressures and long elution times.

5.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201667

RESUMEN

l-Kynurenine (l-Kyn) is an endogenous metabolite produced in the catabolic route of l-Tryptophan (l-Trp), and it is a potential biomarker of several immunological disorders. Thus, the development of a fast and cheap technology for the specific detection of l-Kyn in biological fluids is of great relevance, especially considering its recent correlation with SARS-CoV-2 disease progression. Herein, a disposable screen-printed electrode based on a molecularly imprinted polymer (MIP) has been constructed: the o-Phenylenediamine monomer, in the presence of l-Kyn as a template with a molar ratio of monomer/template of 1/4, has been electropolymerized on the surface of a screen-printed carbon electrode (SPCE). The optimized kyn-MIP-SPCE has been characterized via cyclic voltammetry (CV), using [Fe(CN)6)]3-/4- as a redox probe and a scanning electron microscopy (SEM) technique. After the optimization of various experimental parameters, such as the number of CV electropolymerization cycles, urine pretreatment, electrochemical measurement method and incubation period, l-Kyn has been detected in standard solutions via square wave voltammetry (SWV) with a linear range between 10 and 100 µM (R2 = 0.9924). The MIP-SPCE device allowed l-Kyn detection in human urine in a linear range of 10-1000 µM (R2 = 0.9902) with LOD and LOQ values of 1.5 and 5 µM, respectively. Finally, a high selectivity factor α (5.1) was calculated for l-Kyn toward l-Trp. Moreover, the Imprinting Factor obtained for l-Kyn was about seventeen times higher than the IF calculated for l-Trp. The developed disposable sensing system demonstrated its potential application in the biomedical field.

6.
Polymers (Basel) ; 13(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34372030

RESUMEN

Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives.

7.
J Sep Sci ; 42(18): 3023-3032, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254475

RESUMEN

The aim of this work was to develop an efficient method for the selective extraction and analysis of fenoxycarb, a carbamate pesticide, in mussel samples using a molecularly imprinted solid-phase extraction device. The optimization of molecularly imprinted polymer synthesis was performed using the experimental design under the response surface methodology approach. A fast rebinding study and Freundlich isotherm adsorption were carried out to calculate binding capacity B, site number n, and affinity constant Kf . The optimum molecularly imprinted polymer was successfully used as sorbent of a solid-phase extraction cartridge for the determination of fenoxycarb in real mussel samples. The range of linearity was 0.3-30 mg/L with a correlation coefficient of 0.991. The limit of detection was 0.247 mg/kg. The recovery of fenoxycarb extracted from mussel samples of Mediterranean sea was 97% (n = 3) with relative standard deviation between 6 and 7% proving the reliability of the developed method.


Asunto(s)
Impresión Molecular , Plaguicidas/aislamiento & purificación , Fenilcarbamatos/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida , Animales , Bivalvos , Plaguicidas/química , Fenilcarbamatos/química , Propiedades de Superficie
8.
J Sep Sci ; 41(16): 3204-3212, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29935056

RESUMEN

l-Kynurenine is an endogenous metabolite generated by the catabolic pathway of l-tryptophan and it could be a potential biomarker to test the efficacy of several checkpoint inhibitors that have already reached the clinical trials in the antitumor therapy. Thus, a molecularly imprinted polymer specific for the recognition of this metabolite was synthesized and used as innovative system in solid-phase extraction technique for the specific extraction and quantification of l-kynurenine in human urine. The off-line system was firstly tested on l-kynurenine standard solutions, allowing recoveries up to 97.7% (relative standard deviation = 2.2%) and then applied to fortified and deproteinated human urine samples, where a recovery of 84.1% (relative standard deviation = 3.1%) was obtained. The method was validated and it revealed a good linearity in the range of 0.157-20 µg/mL (r2  = 0.9992). The optimized procedure demonstrated a good feasibility on biological samples, allowing a ready quantification of l-kynurenine in the human urine, where the metabolite was found at a very low concentration (0.80 µg/mL). The extraction system developed could attract attention of pharmaceutical industries for l-kynurenine production as potential drug in the treatment of autoimmune disorders through its extraction and purification from biological matrixes.


Asunto(s)
Quinurenina/aislamiento & purificación , Quinurenina/orina , Impresión Molecular , Extracción en Fase Sólida , Adulto , Voluntarios Sanos , Humanos , Quinurenina/química , Tamaño de la Partícula
9.
Materials (Basel) ; 10(10)2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954407

RESUMEN

Herein, we described the synthesis of a novel ion-imprinted membrane for the detection of palladium(II) prepared through the glutaraldehyde crosslinking of chitosan with a 4-[(4-Hydroxy)phenylazo]benzenesulfonic acid ligand trapped into the membrane. The imprinting technology was used to improve adsorption capacity and adsorption selectivity, and was combined with some advantages of the developed membrane, such as low cost and ease of preparation, water-friendly synthesis, and high biocompatible chitosan material. The membranes were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). The results obtained showed a high swelling ratio with a maximum value of 16.4 (1640%) at pH 4 with a strong pH dependence. Batch rebinding experiments gave a maximum adsorption capacity of 101.6 mg of Pd(II) per gram of imprinted membrane. The Pd(II) adsorption behavior was well-described by a Langmuir model with a theoretical maximum adsorption capacity of 93.48 mg g-1, similar to the experimental one. Finally, a selectivity study versus Ag(I), Pb(II), and Fe(III) ions demonstrated a good selectivity of chitosan-imprinted membrane towards Pd(II).

10.
Int J Mol Sci ; 16(6): 13746-59, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26086824

RESUMEN

An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM) was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA), an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF) membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min) to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples.


Asunto(s)
Resinas Compuestas/química , Desoxiadenosinas/orina , Membranas Artificiales , Impresión Molecular , Urinálisis/métodos , Absorción Fisicoquímica , Humanos , Polivinilos/química
11.
Biosens Bioelectron ; 40(1): 336-41, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22922080

RESUMEN

A highly selective water compatible molecularly imprinted polymer (MIP) for 3-nitro-L-tyrosine (3NT), an oxidative stress marker associated with neurodegenerative disorders, was prepared and its use as solid-phase extraction (SPE) sorbent material was demonstrated. The MIP was prepared by bulk polymerization using methacrylic acid as functional monomer and acetonitrile as porogen with traces of acetic acid and trifluoroacetic acid. In order to evaluate its binding properties, the MIP was analyzed by batch rebinding experiments and subsequently used as SPE sorbent for the selective clean-up and pre-concentration of 3NT from standard solutions and spiked human urine samples. The results obtained from batch rebinding experiments showed the presence of two association constants corresponding to high-affinity (Ka 4.20×10(3) M(-1)) and low-affinity (Ka 0.79×10(3) M(-1)) binding sites. Standard mixture solution loaded on MIP-SPE cartridge gave a recovery of 95% for 3NT, while the other compounds were totally eluted during washing step. Percentage of recovery higher than 90%, with relative standard deviation of 2%, was also obtained when a maximum of 55 µg of 3NT is used in spiked urine sample and loaded into the cartridge. Validation of the analytical method for 3NT quantification in human urine gave 0.7 µg mL(-1) of limit of detection, a linear range of 2.5-55 µg mL(-1) with a relative standard deviation of 2%.


Asunto(s)
Materiales Biomiméticos , Técnicas Biosensibles/instrumentación , Impresión Molecular/instrumentación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/orina , Polímeros/química , Tirosina/análogos & derivados , Materiales Biocompatibles/química , Biomarcadores/química , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tirosina/orina , Agua/química
12.
Int J Mol Sci ; 12(9): 5908-45, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016636

RESUMEN

Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.


Asunto(s)
Predicción , Impresión Molecular/métodos , Impresión Molecular/tendencias , Polímeros/metabolismo , Modelos Moleculares , Estructura Molecular , Reproducibilidad de los Resultados
13.
Int J Mol Sci ; 12(3): 1735-43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673919

RESUMEN

Fmoc-3-nitrotyrosine (Fmoc-3-NT) molecularly imprinted polymers (MIPs) were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA), methacrylic acid (MAA), methacrylamide (MAM), 2-vinylpyridine (2-VP), 4-vinylpyridine (4-VP), have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 × 10(4) M(-1)) was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the -OH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes.


Asunto(s)
Aminoácidos/química , Impresión Molecular , Polímeros/química , Acrilamidas/química , Acrilatos/química , Aminoácidos/síntesis química , Aminoácidos/aislamiento & purificación , Cinética , Metacrilatos/química , Piridinas/química , Tirosina/análogos & derivados , Tirosina/síntesis química , Tirosina/química , Tirosina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...