Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 1410, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082358

RESUMEN

Dp40 is ubiquitously expressed including the central nervous system. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P during the neuronal differentiation of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis showed that the protein expression profile was modified in nerve growth factor-differentiated PC12-Dp40L170P cells compared to that of the control cells (PC12 Tet-On). The proteins α-internexin and S100a6, involved in cytoskeletal structure, were upregulated. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. These results suggest that Dp40 has an important role in the neuronal differentiation of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.


Asunto(s)
Sustitución de Aminoácidos , Distrofina/genética , Filamentos Intermedios/metabolismo , Proyección Neuronal/genética , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Distrofina/metabolismo , Exocitosis , Regulación de la Expresión Génica , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/ultraestructura , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuronas/citología , Células PC12 , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Proteína A6 de Unión a Calcio de la Familia S100/genética , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Transducción de Señal , Vesículas Sinápticas/ultraestructura
2.
J Proteomics ; 191: 80-87, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29625189

RESUMEN

The Dp71 protein is the most abundant dystrophin in the central nervous system (CNS). Several dystrophin Dp71 isoforms have been described and are classified into three groups, each with a different C-terminal end. However, the functions of Dp71 isoforms remain unknown. In the present study, we analysed the effect of Dp71eΔ71 overexpression on neuronal differentiation of PC12 Tet-On cells. Overexpression of dystrophin Dp71eΔ71 stimulates neuronal differentiation, increasing the percentage of cells with neurites and neurite length. According to 2-DE analysis, Dp71eΔ71 overexpression modified the protein expression profile of rat pheochromocytoma PC12 Tet-On cells that had been treated with neuronal growth factor (NGF) for nine days. Interestingly, all differentially expressed proteins were up-regulated compared to the control. The proteomic analysis showed that Dp71eΔ71 increases the expression of proteins with important roles in the differentiation process, such as HspB1, S100A6, and K8 proteins involved in the cytoskeletal structure and HCNP protein involved in neurotransmitter synthesis. The expression of neuronal marker TH was also up-regulated. Mass spectrometry data are available via ProteomeXchange with identifier PXD009114. SIGNIFICANCE: This study is the first to explore the role of the specific isoform Dp71eΔ71. The results obtained here support the hypothesis that the dystrophin Dp71eΔ71 isoform has an important role in the neurite outgrowth by regulating the levels of proteins involved in the cytoskeletal structure, such as HspB1, S100A6, and K8, and in neurotransmitter synthesis, such as HCNP and TH, biological processes required to stimulate neuronal differentiation.


Asunto(s)
Diferenciación Celular , Distrofina/fisiología , Proyección Neuronal , Neuronas/citología , Animales , Proteínas del Citoesqueleto/metabolismo , Distrofina/farmacología , Neurotransmisores/biosíntesis , Células PC12 , Isoformas de Proteínas , Proteómica/métodos , Ratas
3.
Front Cell Neurosci ; 12: 411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483061

RESUMEN

Sympathetic neurons of the rat superior cervical ganglion (SCG) can segregate their neurotransmitters and co-transmitters to separate varicosities of single axons. We have shown that transmitter segregation is a plastic phenomenon and that it is correlated with the strength of synaptic transmission. Here, we determined whether sympathetic dysfunction occurring in stress and hypertension was correlated with plastic changes of neurotransmitter segregation. We characterized the expression of the markers, L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine (ACh) transporter (VAChT) in the SCG of cold stressed and spontaneously hypertensive rats (SHR). Considering that the SCG comprises a heterogeneous neuronal population, we explored whether the expression and segregation of neurotransmitters would also have an intraganglionic heterogeneous distribution in ganglia of stressed and hypertensive rats. Furthermore, since hypertension in SHR is detected around 8-10 weeks, we evaluated expression and segregation of ACh and GABA in adult hypertensive (12-week old (wo)) and young pre-hypertensive (6-wo) SHR. We found an increase in segregation of ACh and GABA with no change in transmitter expression in ganglia of stressed animals. In contrast, in SHR, there was an increase in GABA expression, although segregation did not vary. Segregation showed a caudo-rostral gradient in controls but not in the ganglia of stressed animals. GABA expression showed a rostro-caudal gradient in adult SHR, which was not present in young 6-wo rats. In young SHR, ACh increased and, unexpectedly, segregation of ACh and GABA was higher than in adults. Data suggest that ACh and GABA segregation increases in acute sympathetic hyperactivity like stress, but does not vary in chronic hyperactivity such as in hypertension. Changes in segregation are age-dependent and might be involved in the mechanisms underlying stress and hypertension.

4.
Proteomics ; 16(9): 1331-40, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936078

RESUMEN

PC12 cells acquire a neuronal phenotype in response to nerve growth factor (NGF). However, this phenotype is more efficiently achieved when the Dp71Δ78-79 dystrophin mutant is stably expressed in PC12-C11 cells. To investigate the effect of Dp71Δ78-79 overexpression on the protein profile of PC12-C11 cells, we compared the expression profiles of undifferentiated and NGF-differentiated PC12-C11 and PC12 cells by 2DE. In undifferentiated cultures, one protein was downregulated, and five were upregulated. Dp71Δ78-79 overexpression had a greater effect on differentiated cultures, with ten proteins downregulated and seven upregulated. The protein with the highest upregulation was HspB1. Changes in HspB1 expression were validated by Western blot and immunofluorescence analyses. Interestingly, the neurite outgrowth in PC12-C11 cells was affected by a polyclonal antibody against HspB1, and the level of HspB1 and HspB1Ser86 decreased, suggesting an important role for this protein in this cellular process. Our results show that Dp71Δ78-79 affects the expression level of some proteins and that the stimulated neurite outgrowth produced by this mutant is mainly through upregulation and phosphorylation of HspB1.


Asunto(s)
Distrofina/genética , Proteínas de Choque Térmico/genética , Proteínas de Neoplasias/genética , Neuronas/metabolismo , Animales , Anticuerpos/farmacología , Diferenciación Celular/efectos de los fármacos , Distrofina/metabolismo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Nervioso/farmacología , Proyección Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Células PC12 , Fosforilación , Ratas , Transducción de Señal
5.
Neuroreport ; 27(1): 6-11, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26551922

RESUMEN

Dp71 dystrophin is the main DMD gene product expressed in the central nervous system. Experiments using PC12 cells as a neuronal model have shown that Dp71 isoforms are involved in differentiation, adhesion, cell division, and nuclear architecture. To contribute to the knowledge of Dp71 domains function, we previously reported the isolation and partial characterization of the dystrophin Dp71[INCREMENT]78-79 (a mutant that lacks exons 71, 78, and 79), which stimulates the neuronal differentiation of PC12-C11 clone. In this article, we generated a doxycycline (Dox)-inducible expression system in PC12 Tet-On cells (B10 cells) to overexpress and control the transcription of Dp71[INCREMENT]78-79. Western blotting and confocal microscopy showed an increase in the amount of Dp71[INCREMENT]78-79 (217±75-fold) with the addition of Dox to growth medium. Cell proliferation assays and morphometric analyses demonstrated that Dp71[INCREMENT]78-79 increases the growth rate of B10 cells and reduces the nerve growth factor-neuronal differentiation. Western blotting analysis revealed an upregulation in the expression of proliferating cell nuclear antigen, focal adhesion kinase, and ß-dystroglycan in B10 cells compared with control cells. Our results show that the inducible expression of Dp71[INCREMENT]78-79 increases the growth rate of PC12 Tet-On cells, suggesting a role of this protein in cell proliferation.


Asunto(s)
Proliferación Celular , Distrofina/genética , Distrofina/metabolismo , Animales , Western Blotting , Exones , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Mutación , Neurogénesis/fisiología , Células PC12 , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA