Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38326946

RESUMEN

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Ozono , Compuestos Orgánicos Volátiles , Humanos , Tamaño de la Partícula , Ozono/análisis , Ventilación/métodos , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis
2.
Environ Sci Technol ; 58(4): 1986-1997, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38237915

RESUMEN

Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.


Asunto(s)
Amoníaco , Dióxido de Carbono , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...