Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 39(21-22): 1575-1590, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35765922

RESUMEN

Blast exposure represents a common occupational risk capable of generating mild to severe traumatic brain injuries (TBI). During blast exposure, a pressure shockwave passes through the skull and exposes brain tissue to complex pressure waveforms. The primary neurophysiological response to blast-induced pressure waveforms remains poorly understood. Here, we use a computer-controlled table-top pressure chamber to expose human stem cell-derived cerebral organoids to varied frequency of pressure waves and characterize the neurophysiological response. Pressure waves that reach a maximum amplitude of 250 kPa were used to model a less severe TBI and 350 kPa for a more severe blast TBI event. With each amplitude, a frequency range of 500 Hz, 3000 Hz, and 5000 Hz was tested. Following the 250 kPa overpressure a multi-electrode array recorded organoid neural activity. We observed an acute suppression neuronal activity in single unit events, population events, and network oscillations that recovered within 24 h. Additionally, we observed a network desynchronization after exposure higher frequency waveforms. Conversely, organoids exposed to higher amplitude pressure (350k Pa) displayed drastic neurophysiological differences that failed to recover within 24 h. Further, lower amplitude "blast" (250 kPa) did not induce cellular damage whereas the higher amplitude "blast" (350 kPa) generated greater apoptosis throughout each organoid. Our data indicate that specific features of pressure waves found intracranially during blast TBI have varied effects on neurophysiological activity that can occur even without cellular damage.


Asunto(s)
Traumatismos por Explosión , Lesiones Traumáticas del Encéfalo , Humanos , Organoides , Explosiones , Neuronas/fisiología
2.
Nat Commun ; 12(1): 1423, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658509

RESUMEN

In the mammalian hippocampus, adult-born granule cells (abGCs) contribute to the function of the dentate gyrus (DG). Disruption of the DG circuitry causes spontaneous recurrent seizures (SRS), which can lead to epilepsy. Although abGCs contribute to local inhibitory feedback circuitry, whether they are involved in epileptogenesis remains elusive. Here, we identify a critical window of activity associated with the aberrant maturation of abGCs characterized by abnormal dendrite morphology, ectopic migration, and SRS. Importantly, in a mouse model of temporal lobe epilepsy, silencing aberrant abGCs during this critical period reduces abnormal dendrite morphology, cell migration, and SRS. Using mono-synaptic tracers, we show silencing aberrant abGCs decreases recurrent CA3 back-projections and restores proper cortical connections to the hippocampus. Furthermore, we show that GABA-mediated amplification of intracellular calcium regulates the early critical period of activity. Our results demonstrate that aberrant neurogenesis rewires hippocampal circuitry aggravating epilepsy in mice.


Asunto(s)
Epilepsia/fisiopatología , Hipocampo/fisiopatología , Neurogénesis/fisiología , Animales , Calcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Pilocarpina/farmacología , Retroviridae/genética , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...