Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
IEEE Trans Biomed Circuits Syst ; 16(6): 1030-1043, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36191107

RESUMEN

This work reports the first CMOS molecular electronics chip. It is configured as a biosensor, where the primary sensing element is a single molecule "molecular wire" consisting of a ∼100 GΩ, 25 nm long alpha-helical peptide integrated into a current monitoring circuit. The engineered peptide contains a central conjugation site for attachment of various probe molecules, such as DNA, proteins, enzymes, or antibodies, which program the biosensor to detect interactions with a specific target molecule. The current through the molecular wire under a dc applied voltage is monitored with millisecond temporal resolution. The detected signals are millisecond-scale, picoampere current pulses generated by each transient probe-target molecular interaction. Implemented in a 0.18 µm CMOS technology, 16k sensors are arrayed with a 20 µm pitch and read out at a 1 kHz frame rate. The resulting biosensor chip provides direct, real-time observation of the single-molecule interaction kinetics, unlike classical biosensors that measure ensemble averages of such events. This molecular electronics chip provides a platform for putting molecular biosensing "on-chip" to bring the power of semiconductor chips to diverse applications in biological research, diagnostics, sequencing, proteomics, drug discovery, and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Electrónica , Análisis de Secuencia por Matrices de Oligonucleótidos , Semiconductores , ADN/química , Nanotecnología , Técnicas Biosensibles/métodos
2.
Nat Commun ; 13(1): 6054, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229431

RESUMEN

Oral-facial-digital (OFD) syndromes are a heterogeneous group of congenital disorders characterized by malformations of the face and oral cavity, and digit anomalies. Mutations within 12 cilia-related genes have been identified that cause several types of OFD, suggesting that OFDs constitute a subgroup of developmental ciliopathies. Through homozygosity mapping and exome sequencing of two families with variable OFD type 2, we identified distinct germline variants in INTS13, a subunit of the Integrator complex. This multiprotein complex associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. We determined that INTS13 utilizes its C-terminus to bind the Integrator cleavage module, which is disrupted by the identified germline variants p.S652L and p.K668Nfs*9. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Accordingly, its knockdown in Xenopus embryos leads to motile cilia anomalies. Altogether, we show that mutations in INTS13 cause an autosomal recessive ciliopathy, which reveals key interactions between components of the Integrator complex.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Ciliopatías , Síndromes Orofaciodigitales , Cilios/genética , Ciliopatías/genética , Homocigoto , Humanos , Mutación , Síndromes Orofaciodigitales/genética , ARN , ARN Polimerasa II/genética
4.
PLoS Genet ; 14(5): e1007392, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29768410

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1000832.].

5.
Disaster Med Public Health Prep ; 12(6): 730-738, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29562948

RESUMEN

OBJECTIVE: In this investigation, we reported the increase in emergency department and inpatient admission cases during the month of November 2012 post Hurricane Sandy as compared with baseline (November 2010, 2011, and 2013) for elderly patients aged 65 and up. METHODS: Medical claims data for patients aged 65 and over treated at emergency department and inpatient health care facilities in New Jersey were analyzed to examine the surge in frequencies of diagnoses treated immediately following Hurricane Sandy. The differences were quantified using gap analysis for 2 years before and 1 year after the event. RESULTS: There was an average increase of 1700 cases for the month of November 2012 relative to baseline for the top 15 most frequently diagnosed emergency department medical conditions. On a daily basis, a volume increase by an average 57 cases could be expected, including significant numbers of limb fractures and other trauma cases for these most frequently encountered medical conditions. CONCLUSIONS: Understanding the surge level in medical services needed in emergency departments and inpatient facilities during a natural disaster aftermath is critical for effective emergency preparation and response for the elderly population. (Disaster Med Public Health Preparedness. 2018;12:730-738).


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Hospitales/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Tormentas Ciclónicas/estadística & datos numéricos , Servicio de Urgencia en Hospital/organización & administración , Femenino , Humanos , Revisión de Utilización de Seguros , Masculino , New Jersey , Capacidad de Reacción
6.
J Clin Lab Anal ; 30(6): 1061-1070, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27132877

RESUMEN

BACKGROUND: Despite recent advances in the investigation of myeloproliferative neoplasms (MPN), the impact of genetic heterogeneity on its molecular pathogenesis has not been fully elucidated. Thus, in this study, we aim to characterize the genetic complexity in Korean patients with polycythemia vera (PV) and essential thrombocythemia (ET). METHODS: We conducted association studies using 84 single-nucleotide polymorphisms (SNPs) in 229 patients (96 with PV and 133 with ET) and 170 controls. Further, whole-genome sequencing was performed in six patients (two with JAK2 V617F and four with wild-type JAK2), and putative somatic mutations were validated in a further 69 ET patients. Clinical and laboratory characteristics were also analyzed. RESULTS: Several germline SNPs and the 46 haplotype were significantly associated with PV and ET. Three somatic mutations in MPDZ, IQCH, and CALR genes were selected and validated. The frequency of the CALR mutation was 58.0% (40/69) in ET patients, who did not carry JAK2/MPL mutations. Moreover, compared with JAK2 V617F-positive patients, those with CALR mutations showed lower hemoglobin and hematocrit levels (P = 0.004 and P = 0.002, respectively), higher platelet counts (P =0.008), and a lower frequency of cytoreductive therapy (P = 0.014). CONCLUSION: This study was the first comprehensive investigation of the genetic characteristics of Korean patients with PV and ET. We found that somatic mutations and the 46 haplotype contribute to PV and ET pathogenesis in Korean patients.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Janus Quinasa 2/genética , Policitemia Vera/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Trombopoyetina/genética , Trombocitemia Esencial/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Portadoras/genética , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Proteínas de la Membrana , Persona de Mediana Edad , Policitemia Vera/epidemiología , República de Corea/epidemiología , Estadísticas no Paramétricas , Trombocitemia Esencial/epidemiología , Adulto Joven
8.
Genome Biol ; 15(3): R53, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24667040

RESUMEN

BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.


Asunto(s)
Bases de Datos Genéticas/normas , Pruebas Genéticas/métodos , Genómica/métodos , Revisión de la Investigación por Pares , Análisis de Secuencia de ADN/métodos , Niño , Femenino , Organización de la Financiación , Pruebas Genéticas/economía , Pruebas Genéticas/normas , Genómica/economía , Genómica/normas , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Masculino , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/normas
9.
Proc Natl Acad Sci U S A ; 110(23): 9209-14, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690616

RESUMEN

The study of reaction-diffusion processes is much more complicated on general curved surfaces than on standard Cartesian coordinate spaces. Here we show how to formulate and solve systems of reaction-diffusion equations on surfaces in an extremely simple way, using only the standard Cartesian form of differential operators, and a discrete unorganized point set to represent the surface. Our method decouples surface geometry from the underlying differential operators. As a consequence, it becomes possible to formulate and solve rather general reaction-diffusion equations on general surfaces without having to consider the complexities of differential geometry or sophisticated numerical analysis. To illustrate the generality of the method, computations for surface diffusion, pattern formation, excitable media, and bulk-surface coupling are provided for a variety of complex point cloud surfaces.


Asunto(s)
Algoritmos , Fenómenos Químicos , Matemática/métodos , Modelos Teóricos , Difusión
10.
Electrophoresis ; 33(23): 3397-417, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23208921

RESUMEN

In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives.


Asunto(s)
Semiconductores , Análisis de Secuencia de ADN/métodos , ADN/análisis , ADN/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Diseño de Equipo , Humanos , Análisis de Secuencia de ADN/instrumentación
12.
Ann Neurol ; 72(2): 175-83, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22926851

RESUMEN

OBJECTIVE: Myoclonus is characterized by sudden, brief involuntary movements, and its presence is debilitating. We identified a family suffering from adult onset, cortical myoclonus without associated seizures. We performed clinical, electrophysiological, and genetic studies to define this phenotype. METHODS: A large, 4-generation family with a history of myoclonus underwent careful questioning, examination, and electrophysiological testing. Thirty-five family members donated blood samples for genetic analysis, which included single nucleotide polymorphism mapping, microsatellite linkage, targeted massively parallel sequencing, and Sanger sequencing. In silico and in vitro experiments were performed to investigate functional significance of the mutation. RESULTS: We identified 11 members of a Canadian Mennonite family suffering from adult onset, slowly progressive, disabling, multifocal myoclonus. Somatosensory evoked potentials indicated a cortical origin of the myoclonus. There were no associated seizures. Some severely affected individuals developed signs of progressive cerebellar ataxia of variable severity late in the course of their illness. The phenotype was inherited in an autosomal dominant fashion. We demonstrated linkage to chromosome 16q21-22.1. We then sequenced all coding sequence in the critical region, identifying only a single cosegregating, novel, nonsynonymous mutation, which resides in the gene NOL3. Furthermore, this mutation was found to alter post-translational modification of NOL3 protein in vitro. INTERPRETATION: We propose that familial cortical myoclonus is a novel movement disorder that may be caused by mutation in NOL3. Further investigation of the role of NOL3 in neuronal physiology may shed light on neuronal membrane hyperexcitability and pathophysiology of myoclonus and related disorders.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Salud de la Familia , Predisposición Genética a la Enfermedad/genética , Proteínas Musculares/genética , Mutación/genética , Mioclonía/genética , Adolescente , Adulto , Edad de Inicio , Animales , Canadá , Línea Celular Transformada , Mapeo Cromosómico , Cromosomas Humanos Par 16 , Electroencefalografía , Femenino , Ácido Glutámico/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mioclonía/diagnóstico , Fenotipo , Prolina/genética , Transfección
13.
Nat Genet ; 44(6): 709-13, 2012 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-22581230

RESUMEN

Using homozygosity mapping and locus resequencing, we found that alterations in the homeodomain of the IRX5 transcription factor cause a recessive congenital disorder affecting face, brain, blood, heart, bone and gonad development. We found through in vivo modeling in Xenopus laevis embryos that Irx5 modulates the migration of progenitor cell populations in branchial arches and gonads by repressing Sdf1. We further found that transcriptional control by Irx5 is modulated by direct protein-protein interaction with two GATA zinc-finger proteins, GATA3 and TRPS1; disruptions of these proteins also cause craniofacial dysmorphisms. Our findings suggest that IRX proteins integrate combinatorial transcriptional inputs to regulate key signaling molecules involved in the ontogeny of multiple organs during embryogenesis and homeostasis.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Huesos/anomalías , Encéfalo/anomalías , Región Branquial/citología , Proteínas de Unión al ADN/genética , Femenino , Factor de Transcripción GATA3 , Regulación de la Expresión Génica , Gónadas , Cardiopatías Congénitas/genética , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Proteínas Represoras , Síndrome , Proteínas de Xenopus , Xenopus laevis/genética
14.
Nat Genet ; 44(2): 193-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246503

RESUMEN

Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.


Asunto(s)
Enfermedades Cerebelosas/genética , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Anomalías del Ojo/genética , Ácido Glutámico/metabolismo , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Tubulina (Proteína)/metabolismo , Animales , Centrosoma/metabolismo , Mapeo Cromosómico , Cilios/metabolismo , Femenino , Sitios Genéticos , Humanos , Masculino , Ratones , Mutación , Péptido Sintasas/metabolismo , Polimorfismo de Nucleótido Simple , Procesamiento Proteico-Postraduccional , Síndrome
15.
Nat Genet ; 43(4): 365-9, 2011 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21358634

RESUMEN

Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving scars. High-throughput genomic sequencing of a conservative estimate (24.2 Mb) of the disease locus on chromosome 9 using exon array capture identified independent mutations in TGFBR1 in three unrelated families. Subsequent dideoxy sequencing of TGFBR1 identified 11 distinct monoallelic mutations in 18 affected families, firmly establishing TGFBR1 as the causative gene. The nature of the sequence variants, which include mutations in the extracellular ligand-binding domain and a series of truncating mutations in the kinase domain, indicates a clear genotype-phenotype correlation between loss-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer.


Asunto(s)
Mutación , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Neoplasias Cutáneas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carcinoma/genética , Carcinoma/metabolismo , Codón sin Sentido , Secuencia Conservada , Cartilla de ADN/genética , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Haplotipos , Humanos , Queratoacantoma/genética , Queratoacantoma/metabolismo , Masculino , Síndrome de Marfan/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/metabolismo
16.
Am J Hum Genet ; 87(6): 768-78, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21129727

RESUMEN

We delineated a syndromic recessive preaxial brachydactyly with partial duplication of proximal phalanges to 16.8 Mb over 4 chromosomes. High-throughput sequencing of all 177 candidate genes detected a truncating frameshift mutation in the gene CHSY1 encoding a chondroitin synthase with a Fringe domain. CHSY1 was secreted from patients' fibroblasts and was required for synthesis of chondroitin sulfate moieties. Noticeably, its absence triggered massive production of JAG1 and subsequent NOTCH activation, which could only be reversed with a wild-type but not a Fringe catalytically dead CHSY1 construct. In vitro, depletion of CHSY1 by RNAi knockdown resulted in enhanced osteogenesis in fetal osteoblasts and remarkable upregulation of JAG2 in glioblastoma cells. In vivo, chsy1 knockdown in zebrafish embryos partially phenocopied the human disorder; it increased NOTCH output and impaired skeletal, pectoral-fin, and retinal development. We conclude that CHSY1 is a secreted FRINGE enzyme required for adjustment of NOTCH signaling throughout human and fish embryogenesis and particularly during limb patterning.


Asunto(s)
Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/genética , N-Acetilgalactosaminiltransferasas/genética , Receptores Notch/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Células Cultivadas , Femenino , Mutación del Sistema de Lectura , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , N-Acetilgalactosaminiltransferasas/química , Linaje , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Homología de Secuencia de Aminoácido , Síndrome
17.
BMC Bioinformatics ; 11: 347, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20576157

RESUMEN

BACKGROUND: DNA sequence comparison is a well-studied problem, in which two DNA sequences are compared using a weighted edit distance. Recent DNA sequencing technologies however observe an encoded form of the sequence, rather than each DNA base individually. The encoded DNA sequence may contain technical errors, and therefore encoded sequencing errors must be incorporated when comparing an encoded DNA sequence to a reference DNA sequence. RESULTS: Although two-base encoding is currently used in practice, many other encoding schemes are possible, whereby two ore more bases are encoded at a time. A generalized k-base encoding scheme is presented, whereby feasible higher order encodings are better able to differentiate errors in the encoded sequence from true DNA sequence variants. A generalized version of the previous two-base encoding DNA sequence comparison algorithm is used to compare a k-base encoded sequence to a DNA reference sequence. Finally, simulations are performed to evaluate the power, the false positive and false negative SNP discovery rates, and the performance time of k-base encoding compared to previous methods as well as to the standard DNA sequence comparison algorithm. CONCLUSIONS: The novel generalized k-base encoding scheme and resulting local alignment algorithm permits the development of higher fidelity ligation-based next generation sequencing technology. This bioinformatic solution affords greater robustness to errors, as well as lower false SNP discovery rates, only at the cost of computational time.


Asunto(s)
Algoritmos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Simulación por Computador , ADN/genética
18.
PLoS Genet ; 6(1): e1000832, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20126413

RESUMEN

U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30x genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date.


Asunto(s)
Línea Celular Tumoral/química , Genoma Humano , Glioma/genética , Línea Celular Tumoral/citología , Genotipo , Humanos , Datos de Secuencia Molecular , Mutación , Polimorfismo de Nucleótido Simple , Proteínas/genética , Análisis de Secuencia de ADN
19.
N Engl J Med ; 362(3): 206-16, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20089971

RESUMEN

BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.


Asunto(s)
Condrocitos/citología , Codón sin Sentido , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Animales , Diferenciación Celular , Proliferación Celular , Proteínas del Citoesqueleto , Retículo Endoplásmico/ultraestructura , Genes Recesivos , Glicosilación , Aparato de Golgi/ultraestructura , Humanos , Ratones , Ratones Mutantes , Proteínas Nucleares/deficiencia , Fenotipo , Polimorfismo de Nucleótido Simple , Procesamiento Proteico-Postraduccional/fisiología , Análisis de Secuencia de ADN
20.
BMC Bioinformatics ; 11 Suppl 12: S2, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21210981

RESUMEN

BACKGROUND: Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. RESULTS: In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). CONCLUSIONS: The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets.


Asunto(s)
Genómica/métodos , Programas Informáticos , Bases de Datos de Ácidos Nucleicos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...