Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534366

RESUMEN

Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.


Asunto(s)
Dinámicas Mitocondriales , Membranas Mitocondriales , Masculino , Ratas , Animales , Membranas Mitocondriales/metabolismo , Ácido D-Aspártico/farmacología , Testículo/metabolismo , Regulación hacia Arriba , Ácido Aspártico , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Lípidos/farmacología
2.
J Exp Zool A Ecol Integr Physiol ; 341(4): 470-482, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38433718

RESUMEN

The protective action of melatonin (MLT) against the harmful effects of cadmium (Cd) on testicular activity in rats has been documented previously; however, the involved molecular mechanisms have yet to be elucidated. Herein, we investigate the involvement of the mammalian target of rapamycin (mTOR) on the ability of MLT to counteract the damage induced by Cd on the rat testicular activity. Our study confirmed that Cd has harmful effects on the testes of rats and the protective action exerted by MLT. We reported, for the first time, that the addition of rapamycin (Rapa), a specific mTOR inhibitor, to animals co-treated with Cd and MLT completely abolished the beneficial effects exerted by MLT, indicating that the mTOR pathway partially modulates its helpful effects on Cd testicular toxicity. Interestingly, Rapa-alone treatment, provoking mTOR inhibition, produced altered morphological parameters, increased autophagy of germ and somatic cells, and reduced serum testosterone concentration. In addition, mTOR inhibition also reduced protein levels of markers of steroidogenesis (3ß-Hydroxysteroid dehydrogenase) and blood-testis barrier integrity (occludin and connexin 43). Finally, Rapa altered sperm parameters as well as the ability of mature spermatozoa to perform a proper acrosome reaction. Although further investigation is needed to better clarify the molecular pathway involved in MLT action, we confirm that MLT alleviating Cd effects can be used as a supplement to enhance testicular function and improve male gamete quality.


Asunto(s)
Melatonina , Ratas , Masculino , Animales , Melatonina/farmacología , Cadmio/toxicidad , Sirolimus/farmacología , Semen/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
3.
Reprod Med Biol ; 22(1): e12542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795044

RESUMEN

Purpose: Here, we report, for the first time, the temporal expression and localization of axonemal radial spoke head homolog A (RSPH6A) protein during the first wave of rat spermatogenesis and in oxidative stress conditions. Methods: For the developmental study, testes were collected from rats at different developmental stages (7, 14, 21, 28, 35, 42, and 60 postnatal days); for in vivo treatment, 24 rats were treated with cadmium and/or melatonin. From each sample, western blot (WB) and immunofluorescence (IF) analyses for RSPH6A were performed. Results: RSPH6A expression starts at 21 PND alongside the appearance of I spermatocytes (SPC) with a significant increase up to 60 PND. Data were confirmed by IF analysis, showing that RPSH6A expression is restricted to I and II SPC, spermatids, and mature sperm. In vivo experiments showed that the expression and localization of RSPH6A in the testis and epididymal spermatozoa of adult rats treated with cadmium were impaired. Interestingly, melatonin (an antioxidant), given together with Cd, can counteract its damaging effects. Conclusions: All combined data confirm that RSPH6A contributes to the onset of fertility by acting on sperm motility, raising the possibility of using RSPH6A as a marker for normal fertility in the general population.

4.
Mar Environ Res ; 189: 106071, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37390514

RESUMEN

Microplastics (MPs), plastic particles smaller than 5 mm in diameter, have received extensive attention as new environmental pollutants with still unexplored potential ecological risks. The main objective of the present study is to see if the concomitant exposure to MPs and Cd is more toxic than that to MPs or Cd separately in Aphanius fasciatus. Immature female were exposed to Cd and/or MPs for 21 days, and the subsequent effects were monitored by a combination of biochemical, histological and molecular toxicity markers. Exposure to Cd, but not to MPs, increased metallothioneins content and mRNA levels of the metallothioneins gene MTA both in liver and gills. In addition, we observed a significant oxidative stress response at histological, enzymatic (Catalase and Superoxide dismutase), non-enzymatic (proteins sulfhydryl and malondialdehyde) and gene expression levels to both toxicants in both tissues, particularly in gills, but no clear evidence for interaction between the two factors. Our results indicate a major effect of MPs on gills at different organizational levels. Finally, exposure to both MPs and Cd induced spinal deformities, although bone composition was only altered by the latter, whereas MTA mRNA bone levels were only increased realtive to controls in doubly-exposed samples. Interestingly, the simultaneous use of both pollutants produced the same effects as Cd and MPs alone, probably due to reduced bioavailability of this heavy metal.


Asunto(s)
Peces Killi , Metales Pesados , Contaminantes Químicos del Agua , Animales , Femenino , Cadmio/toxicidad , Cadmio/metabolismo , Microplásticos/toxicidad , Plásticos/toxicidad , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
5.
Clin Exp Pharmacol Physiol ; 50(9): 728-737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331719

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra, for which no disease-modifying treatments are available yet. Thus, developing new neuroprotective drugs with the potential to delay or stop the natural course of the disease is necessary. The aim of the present study was to evaluate the neuroprotective effects of a newly synthesized 3-aminohydantoin derivative named 3-amino-5-benzylimidazolidine-2,4-dione (PHAH). The possible neuroprotective and neurorescue effects of the synthesized compound were tested: (i) in N27 dopaminergic and BV-2 microglial cell lines treated with 6-hydroxydopamine (6-OHDA) and (ii) in the 6-OHDA rat model of PD. PHAH administration reduced proinflammatory markers, including nitric oxide synthase and interleukin-1ß, in BV-2 cells activated by lipopolysaccharide. Although PHAH did not restore cell death induced by 6-OHDA, it was not cytotoxic for dopaminergic cells since cell viability, under the effect of the two concentrations, remained comparable to that of the control cells. Most interestingly, PHAH restored 6-OHDA-induced dopaminergic neurodegeneration in the substantia nigra and striatum and ameliorated 6-OHDA-induced oxidative stress in the rat brain. In summary, we have proven that in PD models, PHAH has neuroprotective effects in vivo and anti-inflammatory effects in vitro; however, these effects remain to be confirmed by carrying out certain specific behavioural tests as well as by exploring other neuroinflammatory markers. The present work also suggests that PHAH is a promising scaffold that can serve as the basis for the design and synthesis of other derivatives that can be potent antiparkinsonian agents.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Oxidopamina/toxicidad , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Dopamina/metabolismo , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad
6.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244200

RESUMEN

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Asunto(s)
Cadmio , Testículo , Ratas , Humanos , Animales , Masculino , Cadmio/metabolismo , Ácido D-Aspártico/farmacología , Ácido D-Aspártico/metabolismo , Espermatogénesis , Estrés Oxidativo , Testosterona
7.
Biology (Basel) ; 12(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37106716

RESUMEN

Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.

8.
Environ Sci Pollut Res Int ; 30(19): 56700-56712, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36928700

RESUMEN

The harmful effects of microplastics and Cd on the testicular activity of sexually mature rats are here documented. Oral treatment with both substances caused testicular impairment that was evidenced by histological and biomolecular alterations, such as MP accumulation in the seminiferous epithelium, imbalance of oxidative status, and reduced sperm quality. Importantly, the cytoarchitecture of the blood-testis barrier was compromised, as revealed by the down-regulation of protein levels of structural occludin, Van Gogh-like protein 2, and connexin 43 and activation of regulative kinases proto-oncogene tyrosine-protein kinase and focal adhesion kinase. Interestingly, for the first time, MPs are reported to activate the autophagy pathway in germ cells, to reduce damaged organelles and molecules, probably in an attempt to avoid apoptosis. Surprisingly, the results obtained with the simultaneous Cd + MPs treatment showed more harmful effects than those produced by MPs alone but less severe than with Cd alone. This might be due to the different ways of administration to rats (oral gavage for MPs and in drinking water for Cd), which might favor the adsorption, in the gastrointestinal tract, of Cd by MPs, which, by exploiting the Trojan horse effect, reduces the bioavailability of Cd.


Asunto(s)
Cadmio , Microplásticos , Ratas , Masculino , Animales , Cadmio/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Barrera Hematotesticular , Semen/metabolismo , Espermatozoides , Testículo
9.
Front Cell Dev Biol ; 11: 1145702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968197

RESUMEN

This paper confirms the damaging effects produced by MP and Cd on testicular activity in the rat. Oral treatment with both chemicals resulted in testicular damage, documented by biomolecular and histological alterations, particularly by impaired morphometric parameters, increased apoptosis, reduced testosterone synthesis, and downregulation of the steroidogenic enzyme 3ß-HSD. We also demonstrated, for the first time, that both MP and Cd can affect the protein level of PTMA, a small peptide that regulates germ cell proliferation and differentiation. Interestingly, the cytoarchitecture of testicular cells was also altered by the treatments, as evidenced by the impaired expression and localization of DAAM1 and PREP, two proteins involved in actin- and microtubule-associated processes, respectively, during germ cells differentiation into spermatozoa, impairing normal spermatogenesis. Finally, we showed that the effect of simultaneous treatment with MP and Cd were more severe than those produced by MP alone and less harmful than those of Cd alone. This could be due to the different ways of exposure of the two substances to rats (in drinking water for Cd and in oral gavage for MP), since being the first contact in the animals' gastrointestinal tract, MP can adsorb Cd, reducing its bioavailability through the Trojan-horse effect.

10.
Sci Total Environ ; 860: 160155, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436653

RESUMEN

Ischemia-reperfusion (IR) injury is an inevitable complication of liver transplantation and partial hepatectomy. Although the hazards of environmental microplastics (EMPs) have been well explored, data underlying their impact on IR-induced hepatotoxicity and how to alleviate these damages remain largely undefined. In this study, the involvement of melatonin (MT) in modulating EMPs toxicity in the liver undergoing ischemia-reperfusion injury was investigated. Male Wistar rats were exposed to MPs for 7 days and then subjected to 1 h of partial warm ischemia (70 %) followed by 24 h of reperfusion. We analyzed some parameters as the oxidative stress, the stability of cytoskeleton as well as inflammation, and autophagy. Our data suggested that EMPs elicited liver injury in ischemic animals. Data revealed several histological alterations caused by EMP and IRI, including cellular disorientation, cell necrosis, and microvacuolar steatosis, as well as inflammatory cell infiltration. EMPs increased blood transaminase (AST and ALT) and oxidative stress levels in the ischemic liver. In addition, RT-qPCR, immunofluorescence, and western blot analyses highlighted an increased expression of α-tubulin, IL-18, NFkB, and LC3. However, the ability of MT to reduce MPs and IRI toxicity was consistent with a significant decrease in the evaluated markers. The combined data not only document that melatonin is an effective agent to protect against hepatic IRI but also reduces cellular dysfunction caused by EMPs.


Asunto(s)
Melatonina , Daño por Reperfusión , Ratas , Masculino , Animales , Plásticos/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Microplásticos/metabolismo , Ratas Wistar , Hígado/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo
11.
Environ Res ; 214(Pt 4): 114088, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35973457

RESUMEN

Humans are exposed to environmental microplastic (MPs) that can be frequent in surrounding environment. The mesenchymal stromal cells are a heterogeneous population, which contain fibroblasts and stromal cells, progenitor cells and stem cells. They are part of the stromal component of most tissue and organs in our organisms. Any injury to their functions may impair tissue renewal and homeostasis. We evaluated the effects of different size MPs that could be present in water bottles on human bone marrow mesenchymal stromal cells (BMMSCs) and adipose mesenchymal stromal cells (AMSCs). MPs of polyethylene terephthalate (MPs-PET) (<1 µm and <2.6 µm) were tested in this study. PET treatments induced a reduction in proliferating cells (around 30%) associated either with the onset of senescence or increase in apoptosis. The AMSCs and BMMSCs exposed to PET showed an alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation as shown by high levels of mRNA for Peroxisome Proliferator Activated Receptor Gamma (PPARG) (7.51 vs 1.00) and reduction in Lipoprotein Lipase (LPL) mRNA levels (0.5 vs 1.0). A loss of differentiation capacity was also observed for the osteocyte phenotype in BMMSCs. In particular, we observed a reduction in Bone Gamma-Carboxy glutamate Protein (BGLAP) (0.4 for PET1 and 0.6 for PET2.6 vs 0.1 CTRL) and reduction in Osteopontin (SPP1) (0.3 for PET 1 and 0.64 for PET 2.6 vs 0.1 CTRL). This pioneering mesenchymal cell response study demonstrated that environmental microplastic could be bioavailable for cell uptake and may further lead to irreversible diseases.


Asunto(s)
Células Madre Mesenquimatosas , Plásticos , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Microplásticos/toxicidad , Plásticos/metabolismo , Plásticos/toxicidad , ARN Mensajero/metabolismo
12.
Environ Sci Pollut Res Int ; 29(26): 39578-39592, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35106724

RESUMEN

The present study was conducted to provide new insights into the mechanisms that may be responsible for cadmium (Cd)-induced toxicity in zebrafish larvae as well as the role of the trace element zinc (Zn) in reversing Cd harmful effects. For this purpose, zebrafish eggs were exposed to Cd or/and Zn for 96 h. The effects on morphological aspect; mortality rate; Cd, Zn, and metallothionein (MT) levels; oxidative stress biomarkers; as well as molecular expression of some genes involved in Zn metabolism (Zn-MT, ZIP10, and ZnT1) and in antioxidant defense system (Cu/Zn-SOD, CAT and GPx) were examined. Our results showed that Cd toxicity was exerted, initially, by an interference with Zn metabolism. Thus, Cd was able to modify the expression of the corresponding genes so as to ensure its intracellular accumulation at the expense of Zn, causing its depletion. An oxidative stress was then generated, representing the second mode of Cd action which resulted in developmental anomalies and subsequently mortality. Interestingly, significant corrections have been noted following Zn supplementation based, essentially, on its ability to interact with the toxic metal. The increases of Zn bioavailability, the improvement of the oxidative status, as well as changes in Zn transporter expression profile are part of the protection mechanisms. The decrease of Cd-induced MTs after Zn supplement, both at the protein and the mRNA level, suggests that the protection provided by Zn is ensured through mechanisms not involving MT expression but which rather depend on the oxidative status.


Asunto(s)
Cadmio , Pez Cebra , Animales , Cadmio/metabolismo , Homeostasis , Metalotioneína/genética , Metalotioneína/metabolismo , Estrés Oxidativo , Pez Cebra/metabolismo , Zinc/metabolismo
13.
Environ Sci Pollut Res Int ; 29(23): 34594-34606, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35040070

RESUMEN

Microplastics (MPs) are ubiquitous environmental contaminants; through their physicochemical properties, they can have potentially negative effects on the environment as well as on animal and human health. Studies addressing the toxicity of MPs on mammalian female reproduction are almost absent. Thus, the main objective of the present study was to assess the impact of oral exposure, during four estrous cycles, of 5 µm polystyrene-type microplastics (PS-MPs) on ovarian function in rats. Particles of PS-MPs were detected in the duodenum and, for the first time, in the different compartments of the ovarian tissue. The toxicity of accumulated PS-MPs was manifested by the reduced relative ovarian weights, by the alteration in the folliculogenesis and in the estrous cycle duration, and by the reduced serum concentration of estradiol. The defective ovarian function following PS-MP treatment might be due to the induction of oxidative stress, which has been proved by an increased malondialdehyde (MDA) concentration and an increased superoxide dismutase (SOD) and catalase (CAT) activities as well as a decreased protein sulfhydryl (PSH) level in the rat ovary. Importantly, by immunofluorescence and RT-PCR, we demonstrated a significant decrease in the expression of cytoskeletal proteins: α-tubulin and disheveled-associated activator of morphogenesis (DAAM-1) in the ovary of rats exposed to PS-MPs at proteomic and transcriptomic levels. Our results uncovered, for the first time, the distribution and accumulation of PS-MPs across rat ovary, revealed a significant alteration in some biomarkers of the ovarian function, and highlighted the possible involvement of MP-induced disturbance of cytoskeleton in these adverse effects.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Antioxidantes/farmacología , Citoesqueleto , Femenino , Mamíferos , Estrés Oxidativo , Plásticos , Poliestirenos/toxicidad , Proteómica , Ratas , Contaminantes Químicos del Agua/toxicidad
14.
Ecotoxicol Environ Saf ; 226: 112878, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34634736

RESUMEN

Herein, we further document the protective action of melatonin (MLT) in mitigating cadmium (Cd) effects on adult rat testis. Cd treatment provoked testicular injury, that was documented by histological and biomolecular alterations, i.e., decrease of serum and testicular testosterone concentration and modified sperm parameters. Mainly, both the cytoarchitecture of the blood-testis barrier (BTB) and germ cell morphology were perturbed, as highlighted by impairment in structural (OCN, VANGL, Cx43) and regulative (Src and FAK) protein levels and/or activation. The study focused on the involvement of the autophagy pathway, that was enhanced especially in the Sertoli cells, probably in response to the disorganization of the BTB. Results obtained with the MLT co-treatment demonstrated that its administration decreased the level of oxidative damage caused by Cd, with reversal of all the observed changes. Moreover, the beneficial effects of MLT alone were evidenced by an increase of sperm quality, in term of motility and DNA integrity. The combined results, obtained in rat, strongly encourage to consider a role for MLT in improving also human testicular health, not only in men exposed to Cd, but also in those having fertility disorders, to ameliorate sperm quality and, consequently, reproductive success.


Asunto(s)
Barrera Hematotesticular , Melatonina , Animales , Cadmio/toxicidad , Masculino , Melatonina/farmacología , Ratas , Espermatozoides , Testículo
15.
Xenobiotica ; 51(9): 1038-1046, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338604

RESUMEN

We evaluated, in vitro, the interactions between cadmium (Cd) and zinc (Zn) during the proliferation and differentiation process using bone MC3T3-E1 cell line.Cells were treated with CdCl2 and/or ZnCl2 for 24 and 48 h and 5 µM CdCl2 was found as low cytotoxic dose and 25 µM ZnCl2 as the best Zn treatment for cell proliferation. Gene expression of some bone markers (Runx2, collagen α1 (Colα1), osteocalcin (Oc), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) was studied at 24, 48 and 72 h.Treatment by CdCl2 depressed Runx2, Colα1, and BSP mRNA levels after 24 h. Oc and ALP gene expression was found to be decreased after 72 h.CdCl2 -exposure decreased ALP activity and Ca deposit in matrix. In concomitant treatment by CdCl2 and ZnCl2, gene expression of osteoblastic markers was found to be up-regulated (p < 0, 05) compared to CdCl2 treated cells, ALP staining and mineralization were increased.Our results show that Zn could prevent Cd-induced toxicity on MC3T3-E1 cells, probably through the restoration of Runx2, col α1, BSP, ALP and Oc and gene expression inhibited by Cd.


Asunto(s)
Cadmio , Osteoblastos , Fosfatasa Alcalina/genética , Antígenos de Diferenciación , Cadmio/toxicidad , Diferenciación Celular , Línea Celular , Proliferación Celular , Expresión Génica , Zinc
16.
Genes (Basel) ; 12(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208970

RESUMEN

Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3ß-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.


Asunto(s)
Cadmio/toxicidad , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Prolil Oligopeptidasas/metabolismo , Testículo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis , Proteínas del Citoesqueleto/genética , Masculino , Prolil Oligopeptidasas/genética , Ratas , Ratas Wistar , Espermatogénesis , Testículo/metabolismo , Testículo/patología
17.
Spine Deform ; 9(4): 883-892, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33512704

RESUMEN

STUDY DESIGN: Observational study of Killifish with spinal deformities OBJECTIVE: To evaluate the morphology and molecular biology of Aphanius fasciatus with severe spine deformities. Idiopathic Scoliosis affects 3% of the population and is an abnormal three-dimensional curvature of the spine with unknown cause. The lack of a model system with naturally occurring spinal curvatures has hindered research on the etiology of IS. METHODS: The Mediterranean killifish Aphanius fasciatus, collected from the coast of Sfax (Tunisia), which has an inborn skeletal deformity was chosen. We used morphologic features to evaluate the severity of scoliosis according to the different types and performed a biochemical analysis using factors previously studied in humans (estradiol, melatonin and Insulin Growth Factor 1 "IGF-1"). RESULTS: We have detected relevant molecular deviations that occur in Killifish deformities and the fish with severe scoliosis are smaller and less old than the ones with milder scolioses. Furthermore, a significant change in levels of ovarian estradiol, liver IGF-1 and brain melatonin was noted between deformed and normal fish. CONCLUSIONS: Aphanius fasciatus could be used as a molecular model system to study the etiology of IS in humans as the characterization of the Aphanius fasciatus scoliosis syndrome has revealed morphological and biochemical parallels to IS. However, it is important to note the limitations of the proposed model, including the short lifespan of the fish. LEVEL OF EVIDENCE: III.


Asunto(s)
Modelos Animales de Enfermedad , Escoliosis , Animales , Humanos , Columna Vertebral
18.
Environ Pollut ; 270: 116056, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199064

RESUMEN

Herein, the first evidence of the ability of melatonin (MLT) to counteract cadmium (Cd) toxic effects on the rat ovary is reported. Cd treatment, enhancing oxidative stress, provoked clear morphological, histological and biomolecular alterations, i.e. in the estrous cycle duration, in the ovarian and serum E2 concentration other than in the steroidogenic and folliculogenic genes expression. Results demonstrated that the use of MLT, in combination with Cd, avoided the changes, strongly suggesting that it is an efficient antioxidant for preventing oxidative stress in the rat ovary. Moreover, to explore the underlying mechanism involved, at molecular level, in the effects of Cd-MLT interaction, the study focused on the mTOR and ERK1/2 pathways. Interestingly, data showed that Cd influenced the phosphorylation status of mTOR, of its downstream effectors and of ERK1/2, inducing autophagy and apoptosis, while cotreatment with MLT nullified these changes. This work highlights the beneficial role exerted by MLT in preventing Cd-induced toxicity in the rat ovary, encouraging further studies to confirm its action on human ovarian health with the aim to use this indolamine to ameliorate oocyte quality in women with fertility disorders.


Asunto(s)
Melatonina , Cadmio/metabolismo , Cadmio/toxicidad , Femenino , Melatonina/metabolismo , Melatonina/farmacología , Ovario/metabolismo , Estrés Oxidativo , Ratas , Serina-Treonina Quinasas TOR/metabolismo
19.
Fish Physiol Biochem ; 46(6): 2265-2280, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32978696

RESUMEN

The present study aimed to investigate the effect of dietary of melatonin (MLT) and folic acid (FA) administrations on growth performance, antioxidant status, and liver histological structure of juvenile gilthead sea bream, Sparus aurata L. under standard rearing conditions. Four diets were considered: a basal diet considered a control and three diets supplemented with 40 mg/kg of melatonin (MLT), 2 mg/kg of folic acid (FA), and with the mixture of melatonin and folic acid (MLT + FA). Each diet was randomly allocated to triplicate groups of fish (mean initial weight was 2.99 ± 0.55 g) for 41 days. The obtained results clearly indicated that the melatonin-supplemented diet decreased significantly the growth performance parameters (final body weight, weight gain rate, and specific growth rate) and IGF-1 level of the gilthead sea bream, while the folic acid-supplemented diet has no significant effect on these parameters. The mixture supplementation of melatonin and folic acid has no significant effect on the growth parameters due to the possible interaction between melatonin and folic acid effects. Furthermore, fish fed with all experimental diets showed significantly higher superoxide dismutase activity (SOD) and protein sulfhydryl level (PSH) and lower lipid peroxidation level (TBARS) and catalase activity (CAT) which confirm their powerful antioxidant role. The acetylcholinesterase activity (ACHE) decreased in fish fed with all experimental diets. The underlying mechanisms of driving melatonin and folic acid to reduce acetylcholinesterase activity require further studies. The histological structure of liver of control S. aurata fish shows severe hepatic lipid accumulation in large vacuoles that diminished after dietary individual or mixture folic acid and melatonin supplementations over 41 days. This work proved that 2 mg/kg of dietary folic acid has a positive effect on the growth performance, oxidative stress defense, and hepatic lipid accumulation reduction in the gilthead sea bream fish. Under our experimental conditions, melatonin failed to improve the growth indexes WGR, SGR, and IGF-I. This study recommends the diet supplementation with a dose lower than 2 mg/kg of food due to the observed effects on tissue ACHE activity.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico/farmacología , Melatonina/farmacología , Dorada/crecimiento & desarrollo , Dorada/metabolismo , Acetilcolinesterasa/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Catalasa/metabolismo , Proteínas de Peces/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Mol Reprod Dev ; 87(5): 565-573, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32329151

RESUMEN

During the differentiation of the male gamete, there is a massive remodeling in the shape and architecture of all the cells of the seminiferous epithelium. The cytoskeleton, as well as many associated proteins with it, plays a pivotal role in this process. The testis is particularly susceptible to environmental pollutant, which can lead to injury and impairment of normal spermatozoa production. Cadmium (Cd) is one of the major chemical environmental toxicants in economically developed countries. Food and cigarettes are the main sources of exposure to this element. Here, the protective role of zinc (Zn) to prevent the testicular toxicity in male adult rats after prenatal and during lactation exposure to Cd has been assessed. Altered testicular histology at the interstitial and germinal levels was found, whereas Zn supply completely corrected Cd toxicity. Moreover, the effects of these metals on the testicular expression and localization of the protease prolyl endopeptidase (PREP) were evaluated. Interestingly, the results showed an increase of PREP messenger RNA and protein. Data were corroborated by immunofluorescence. This study raises the possibility of using PREP as a new fertility marker.


Asunto(s)
Cadmio/toxicidad , Prolil Oligopeptidasas/genética , Testículo/efectos de los fármacos , Animales , Animales Recién Nacidos , Animales Lactantes , Citoprotección/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Lactancia/efectos de los fármacos , Lactancia/genética , Lactancia/metabolismo , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Prolil Oligopeptidasas/metabolismo , Ratas , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA