Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7667, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996475

RESUMEN

Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.

2.
Nano Lett ; 22(15): 6428-6434, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748753

RESUMEN

In tandem catalytic systems, controlling the reaction steps and side reactions is extremely challenging. Here, we demonstrate a nanoreactor platform comprising magnetic- and plasmonic-coupled catalytic modules that synchronizes reaction steps at unconnected neighboring reaction sites via decoupled nanolocalized energy harvested using distinct antennae reactors while minimizing the interconflicting effects. As was desired, the course of the reaction and product yields can be controlled by a convenient remote operation of alternating magnetic field (AMF) and near-infrared light (NIR). Following this strategy, a tandem reaction involving [Pd]-catalyzed Suzuki-Miyaura C-C cross-coupling and [Pt]-catalyzed aerobic alcohol oxidation enabled an excellent yield of cinnamaldehyde (ca. 95%) by overcoming the risk of side reactions. The customization scope for using different catalytic metals (Pt, Pd, Ru, and Rh) with in situ control over product release through remotely operable benign energy sources opens avenues for designing diverse catalytic schemes for targeted applications.


Asunto(s)
Metales , Nanotecnología , Catálisis , Fenómenos Magnéticos , Fenómenos Físicos
3.
Biosens Bioelectron ; 165: 112419, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729537

RESUMEN

Field-effect transistor (FET) biosensors based on low-dimensional materials are capable of highly sensitive and specific label-free detection of various analytes. In this work, a FET biosensor based on graphene decorated with gold nanoparticles (Au NPs) was fabricated for lactose detection in a liquid-gate measurement configuration. This graphene device is functionalized with a carbohydrate recognition domain (CRD) of the human galectin-3 (hGal-3) protein to detect the presence of lactose from the donor effect of lectin - glycan affinity binding on the graphene. Although the detection of lactose is important because of its ubiquitous presence in food and for disease related applications (lactose intolerance condition), in this work we exploit the lectin/carbohydrate interaction to develop a device that in principle could specifically detect very low concentrations of any carbohydrate. The biosensor achieved an effective response to lactose concentrations over a dynamic range from 1 fM to 1 pM (10-15 to 10-12 mol L-1) with a detection limit of 200 aM, a significant enhancement over previous electrochemical graphene devices. The FET sensor response is also specific to lactose at aM concentrations, indicating the potential of a combined lectin and graphene FET (G-FET) sensor to detect carbohydrates at high sensitivity and specificity for disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Oro , Humanos , Lactosa , Transistores Electrónicos
4.
Chemistry ; 24(23): 6036-6040, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29465758

RESUMEN

An enantioselective organocatalytic multicomponent reaction of aldehydes, ketones, and Meldrum's acid has been developed. A cinchona-based primary amine (1 mol %) catalyses the multicomponent reaction via the formation of the Knoevenagel product and a chiral enamine to form enantiopure δ-keto Meldrum's acids in a tandem catalytic pathway. An adverse effect of higher catalyst loading and longer reaction time on enantioselectivity was studied. This mild protocol provides an easy access to enantiopure carboxylic acids, esters and amides and the method is scalable on a gram quantity. DFT calculations were carried out on the proposed reaction mechanism and they were in close agreement with the experimental results.

5.
Org Biomol Chem ; 12(2): 261-4, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24281043

RESUMEN

A mild and efficient chemoselective N-deacetylation using the Schwartz reagent at room temperature in rapid time is described. The mild and neutral conditions enable orthogonal N-deacetylation in the presence of some of the common protecting groups (viz. Boc, Fmoc, Cbz, Ts). The deprotection conditions did not induce any epimerization at the chiral amino centre.


Asunto(s)
Acetamidas/química , Aminas/síntesis química , Acetilación , Aminas/química , Estructura Molecular , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...