Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 10(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683605

RESUMEN

Bacteria and archaea use CRISPR-Cas adaptive immunity systems to interfere with viruses, plasmids, and other mobile genetic elements. During the process of adaptation, CRISPR-Cas systems acquire immunity by incorporating short fragments of invaders' genomes into CRISPR arrays. The acquisition of fragments of host genomes leads to autoimmunity and may drive chromosomal rearrangements, negative cell selection, and influence bacterial evolution. In this study, we investigated the role of proteins involved in genome stability maintenance in spacer acquisition by the Escherichia coli type I-E CRISPR-Cas system targeting its own genome. We show here, that the deletion of recJ decreases adaptation efficiency and affects accuracy of spacers incorporation into CRISPR array. Primed adaptation efficiency is also dramatically inhibited in double mutants lacking recB and sbcD but not in single mutants suggesting independent involvement and redundancy of RecBCD and SbcCD pathways in spacer acquisition. While the presence of at least one of two complexes is crucial for efficient primed adaptation, RecBCD and SbcCD affect the pattern of acquired spacers. Overall, our data suggest distinct roles of the RecBCD and SbcCD complexes and of RecJ in spacer precursor selection and insertion into CRISPR array and highlight the functional interplay between CRISPR-Cas systems and host genome maintenance mechanisms.


Asunto(s)
Adaptación Fisiológica , Sistemas CRISPR-Cas , Reparación del ADN , Escherichia coli/genética , Inestabilidad Genómica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Genoma Bacteriano
2.
Nat Commun ; 10(1): 4603, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601800

RESUMEN

Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer. Here we develop a method for strand-specific, high-throughput sequencing of DNA fragments, FragSeq, and apply this method to identify DNA fragments accumulated in Escherichia coli cells undergoing robust primed adaptation by a type I-E or type I-F CRISPR-Cas system. The detected fragments have sequences matching spacers acquired during primed adaptation and function as spacer precursors when introduced exogenously into cells by transformation. The identified prespacers contain a characteristic asymmetrical structure that we propose is a key determinant of integration into the CRISPR array in an orientation that confers immunity.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Bacteriano/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Microorganismos Modificados Genéticamente , Transgenes
3.
Nucleic Acids Res ; 45(6): 3297-3307, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28204574

RESUMEN

During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plásmidos/genética
4.
Nucleic Acids Res ; 45(4): 1946-1957, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28130424

RESUMEN

CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR-Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR-Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release.


Asunto(s)
Bacteriólisis , Bacteriófagos/fisiología , Sistemas CRISPR-Cas , Escherichia coli/fisiología , Escherichia coli/virología , Bacteriófago lambda/genética , Marcación de Gen , Variación Genética , Genoma Viral , Fagos T/genética
5.
J Am Chem Soc ; 136(31): 11168-75, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25026542

RESUMEN

Translation inhibitor microcin C (McC) is a heptapeptide with an aspartate α-carboxyl group linked to AMP via phosphoramidate bond. Modification of the McC phosphate by an aminopropyl moiety increases the biological activity by ~10-fold. Here, we determine the pathway of the aminopropylation reaction of McC. We show that the MccD enzyme uses S-adenosyl methionine to transfer 3-amino-3-carboxypropyl group onto a phosphate of an McC maturation intermediate consisting of adenylated heptapeptide. The carboxyl group is removed by the MccE enzyme, yielding mature McC. MccD is an inefficient enzyme that requires for its action the product of Escherichia coli mtn gene, a 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase, which hydrolyses 5'-methylthioadenosine, the product of MccD-catalyzed reaction, thus stimulating the amino-3-carboxypropylation reaction. Both MccD and MccE are capable of modifying McC-like compounds with divergent peptide moieties, opening way for preparation of more potent peptidyl-adenylates.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Bacteriocinas/biosíntesis , Bacteriocinas/farmacología , Ácidos Carboxílicos/metabolismo , Escherichia coli/enzimología
6.
RNA Biol ; 10(5): 716-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23619643

RESUMEN

In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca. 200,000 spacers acquired during E. coli type I-E CRISPR/Cas-driven plasmid elimination were analyzed. Analysis of positions of plasmid protospacers from which newly acquired spacers have been derived is inconsistent with spacer acquisition machinery sliding along the target DNA as the primary mechanism responsible for strand bias during primed spacer acquisition. Most protospacers that served as donors of newly acquired spacers during primed spacer acquisition had an AAG protospacer adjacent motif, PAM. Yet, the introduction of multiple AAG sequences in the target DNA had no effect on the choice of protospacers used for adaptation, which again is inconsistent with the sliding mechanism. Despite a strong preference for an AAG PAM during CRISPR adaptation, the AAG (and CTT) triplets do not appear to be avoided in known E. coli phages. Likewise, PAM sequences are not avoided in Streptococcus thermophilus phages, indicating that CRISPR/Cas systems may not have been a strong factor in shaping host-virus interactions.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Colifagos/genética , Escherichia coli/genética , Fagos de Streptococcus/genética , Secuencia de Bases , ADN Bacteriano/genética , ADN Intergénico , Escherichia coli/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Plásmidos
7.
Proc Natl Acad Sci U S A ; 109(12): 4425-30, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22388748

RESUMEN

Several classes of naturally occurring antimicrobials exert their antibiotic activity by specifically targeting aminoacyl-tRNA synthetases, validating these enzymes as drug targets. The aspartyl tRNA synthetase "Trojan horse" inhibitor microcin C7 (McC7) consists of a nonhydrolyzable aspartyl-adenylate conjugated to a hexapeptide carrier that facilitates active import into bacterial cells through an oligopeptide transport system. Subsequent proteolytic processing releases the toxic compound inside the cell. Producing strains of McC7 must protect themselves against autotoxicity that may result from premature processing. The mccF gene confers resistance against endogenous and exogenous McC7 by hydrolyzing the amide bond that connects the peptide and nucleotide moieties of McC7. We present here crystal structures of MccF, in complex with various ligands. The MccF structure is similar to that of dipeptide ld-carboxypeptidase, but with an additional loop proximal to the active site that serves as the primary determinant for recognition of adenylated substrates. Wild-type MccF only hydrolyzes the naturally occurring aspartyl phosphoramidate McC7 and synthetic peptidyl sulfamoyl adenylates that contain anionic side chains. We show that substitutions of two active site MccF residues result in a specificity switch toward aromatic aminoacyl-adenylate substrates. These results suggest how MccF-like enzymes may be used to avert various toxic aminoacyl-adenylates that accumulate during antibiotic biosynthesis or in normal metabolism of the cell.


Asunto(s)
Bacteriocinas/química , Carboxipeptidasas/química , Amidas/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Bacterias/efectos de los fármacos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Hidrólisis , Cinética , Modelos Moleculares , Conformación Molecular , Mutación , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
8.
J Bacteriol ; 191(20): 6273-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19684138

RESUMEN

Microcin C (McC) is a potent antibacterial agent produced by some strains of Escherichia coli. McC consists of a ribosomally synthesized heptapeptide with a modified AMP attached through a phosphoramidate linkage to the alpha-carboxyl group of the terminal aspartate. McC is a Trojan horse inhibitor: it is actively taken inside sensitive cells and processed there, and the product of processing, a nonhydrolyzable aspartyl-adenylate, inhibits translation by preventing aminoacylation of tRNA(Asp) by aspartyl-tRNA synthetase (AspRS). Changing the last residue of the McC peptide should result in antibacterial compounds with targets other than AspRS. However, mutations that introduce amino acid substitutions in the last position of the McC peptide abolish McC production. Here, we report total chemical synthesis of three McC-like compounds containing a terminal aspartate, glutamate, or leucine attached to adenosine through a nonhydrolyzable sulfamoyl bond. We show that all three compounds function in a manner similar to that of McC, but the first compound inhibits bacterial growth by targeting AspRS while the latter two inhibit, respectively, GluRS and LeuRS. Our approach opens a way for creation of new antibacterial Trojan horse agents that target any 1 of the 20 tRNA synthetases in the cell.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Estructura Molecular
9.
J Bacteriol ; 191(7): 2380-7, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19168611

RESUMEN

Microcin C (McC), an inhibitor of the growth of enteric bacteria, consists of a heptapeptide with a modified AMP residue attached to the backbone of the C-terminal aspartate through an N-acyl phosphamidate bond. Here we identify maturation intermediates produced by cells lacking individual mcc McC biosynthesis genes. We show that the products of the mccD and mccE genes are required for attachment of a 3-aminopropyl group to the phosphate of McC and that this group increases the potency of inhibition of the McC target, aspartyl-tRNA synthetase.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/aislamiento & purificación , Vías Biosintéticas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Modelos Moleculares , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación
10.
J Bacteriol ; 190(7): 2607-10, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18223070

RESUMEN

The heptapeptide-nucleotide microcin C (McC) targets aspartyl-tRNA synthetase. Upon its entry into a susceptible cell, McC is processed to release a nonhydrolyzable aspartyl-adenylate that inhibits aspartyl-tRNA synthetase, leading to the cessation of translation and cell growth. Here, we surveyed Escherichia coli cells with singly, doubly, and triply disrupted broad-specificity peptidase genes to show that any of three nonspecific oligopeptidases (PepA, PepB, or PepN) can effectively process McC. We also show that the rate-limiting step of McC processing in vitro is deformylation of the first methionine residue of McC.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Aspartato-ARNt Ligasa/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Espectrometría de Masas , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Estructura Molecular , Mutación , Péptido Hidrolasas/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
11.
J Bacteriol ; 189(22): 8361-5, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17873039

RESUMEN

Microcin C (McC), a peptide-nucleotide antibiotic, targets aspartyl-tRNA synthetase. By analyzing a random transposon library, we identified Escherichia coli mutants resistant to McC. Transposon insertions were localized to a single locus, yejABEF, which encodes components of a putative inner membrane ABC transporter. Analysis of site-specific mutants established that all four components of the transporter are required for McC sensitivity. Since aspartyl-tRNA synthetase in yej mutant extracts was fully sensitive to McC, we conclude that yej mutations interfere with McC uptake and that YejABEF is the only inner membrane transporter responsible for McC uptake in E. coli. Other substrates of YejABEF remain to be identified.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/farmacología , Regulación Bacteriana de la Expresión Génica , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Biosíntesis de Proteínas/efectos de los fármacos
12.
J Bacteriol ; 189(5): 2114-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17158672

RESUMEN

Microcin C (McC), a peptide-nucleotide Trojan horse antibiotic, targets aspartyl-tRNA synthetase. We present the results of a systematic mutational study of the 7-amino-acid ribosomally synthesized peptide moiety of McC. Our results define amino acid positions important for McC maturation and cell uptake and processing and open the way for creation of more potent McC-based inhibitors.


Asunto(s)
Antibacterianos/farmacología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Relación Estructura-Actividad
13.
J Biol Chem ; 281(26): 18033-42, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16574659

RESUMEN

Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined. Here, we show that Microcin C is a subject of specific degradation inside the sensitive cell. The product of degradation, a modified aspartyl-adenylate containing an N-acylphosphoramidate linkage, strongly inhibits translation by blocking the function of aspartyl-tRNA synthetase.


Asunto(s)
Antibacterianos/farmacocinética , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/farmacocinética , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Aminoacilación , Antibacterianos/química , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Hidrólisis , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...