Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 132(24): 8268-9, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20507091

RESUMEN

A transient tyrosyl-like radical with a narrow doublet X-band EPR signal is present during catalase turnover by Mycobacterium tuberculosis catalase-peroxidase (KatG). Labeling of KatG with beta-methylene-deuterated tyrosine causes a collapse of the doublet to a singlet, while for 3,5-ring-deuterated tyrosine-labeled enzyme, no changes occur in the EPR signal. Except for the replacement Tyr229Phe, all other single-tyrosine mutants of KatG exhibit the same narrow doublet EPR signal and catalase activity similar to that of the wild-type enzyme. These findings confirm that this catalytically competent radical is associated with Tyr229, whose 3' and 5' protons are replaced as a result of cross-links with neighboring Met255 and Trp107 side chains in the post-translationally modified enzyme containing a distal-side Met255-Tyr229-Trp107 adduct.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Mutagénesis Sitio-Dirigida , Peroxidasas/química , Peroxidasas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radicales Libres/metabolismo , Marcaje Isotópico , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Peroxidasas/genética , Conformación Proteica
2.
J Biol Chem ; 284(11): 7030-7, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19139098

RESUMEN

Catalase-peroxidase (KatG) is essential in Mycobacterium tuberculosis for oxidative stress management and activation of the antitubercular pro-drug isoniazid. The role of a unique distal side adduct found in KatG enzymes, involving linked side chains of residues Met255, Tyr229, and Trp107 (MYW), in the unusual catalase activity of KatG is addressed here and in our companion paper (Suarez, J., Ranguelova, K., Jarzecki, A. A., Manzerova, J., Krymov, V., Zhao, X., Yu, S., Metlitsky, L., Gerfen, G. J., and Magliozzo, R. S. (2009) J. Biol. Chem. 284, in press). The KatG[W107F] mutant exhibited severely reduced catalase activity yet normal peroxidase activity, and as isolated contains more abundant 6-coordinate heme in high spin and low spin forms compared with the wild-type enzyme. Most interestingly, oxyferrous heme is also found in the purified enzyme. Oxyferrous KatG[W107F] was prepared by photolysis in air of the carbonyl enzyme or was generated using hydrogen peroxide decayed with a t1/2 of 2 days compared with 6 min for wild-type protein. The stability of oxyenyzme was modestly enhanced in KatG[Y229F] but was not affected in KatG[M255A]. Optical stopped-flow experiments showed rapid formation of Compound I in KatG[W107F] and facile formation of oxyferrous heme in the presence of micromolar hydrogen peroxide. An analysis of the relationships between catalase activity, stability of oxyferrous enzyme, and a proposed MYW adduct radical is presented. The loss of catalase function is assigned to the loss of the MYW adduct radical and structural changes that lead to greatly enhanced stability of oxyenzyme, an intermediate of the catalase cycle of native enzyme.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/química , Catalasa/química , Hemo/química , Peróxido de Hidrógeno/química , Mutación Missense , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Estabilidad de Enzimas/genética , Hemo/genética , Hemo/metabolismo , Peróxido de Hidrógeno/metabolismo , Isoniazida/química , Modelos Químicos , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Profármacos/química , Estructura Terciaria de Proteína/genética
3.
J Biol Chem ; 284(11): 7017-29, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19139099

RESUMEN

A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.


Asunto(s)
Proteínas Bacterianas/química , Catalasa/química , Hemo/química , Peróxido de Hidrógeno/química , Modelos Químicos , Mycobacterium tuberculosis/enzimología , Peroxidasa/química , Proteínas Bacterianas/genética , Catalasa/genética , Catálisis , Hemo/genética , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Mycobacterium tuberculosis/genética , Peroxidasa/genética , Estructura Terciaria de Proteína/fisiología
4.
Biochemistry ; 47(47): 12583-92, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18956888

RESUMEN

The catalase-peroxidase (KatG) of Mycobacterium tuberculosis (Mtb) is important for the virulence of this pathogen and also is responsible for activation of isoniazid (INH), an antibiotic in use for over 50 years in the first line treatment against tuberculosis infection. Overexpressed Mtb KatG contains a heterogeneous population of heme species that present distinct spectroscopic properties and, as described here, functional properties. A six-coordinate (6-c) heme species that accumulates in the resting enzyme after purification is defined as a unique structure containing weakly associated water on the heme distal side. We present the unexpected finding that this form of the enzyme, generally present as a minority species along with five-coordinate (5-c) enzyme, is the favored reactant for ligand binding. The use of resting enzyme samples with different proportional composition of 5-c and 6-c forms, as well as the use of KatG mutants with replacements at residue 315 that have different tendencies to stabilize the 6-c form, allowed demonstration of more rapid cyanide binding and preferred peroxide binding to enzyme containing 6-c heme. Optical-stopped flow and equilibrium titrations of ferric KatG with potassium cyanide reveal complex behavior that depends in part on the amount of 6-c heme in the resting enzymes. Resonance Raman and low-temperature EPR spectroscopy clearly demonstrate favored ligand (cyanide or peroxide) binding to 6-c heme. The 5-c and 6-c enzyme forms are not in equilibrium on the time scale of the experiments. The results provide evidence for the likely participation of specific water molecule(s) in the first phases of the reaction mechanism of catalase-peroxidase enzymes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianuros/metabolismo , Compuestos Férricos/metabolismo , Mycobacterium tuberculosis/enzimología , Peroxidasas/química , Peroxidasas/metabolismo , Agua/metabolismo , Proteínas Bacterianas/genética , Espectroscopía de Resonancia por Spin del Electrón , Isomerismo , Ligandos , Mutación , Peroxidasas/genética , Protones , Espectrometría Raman , Volumetría
5.
J Biol Chem ; 282(9): 6255-64, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17204474

RESUMEN

Catalase-peroxidase (KatG) from Mycobacterium tuberculosis, a Class I peroxidase, exhibits high catalase activity and peroxidase activity with various substrates and is responsible for activation of the commonly used antitubercular drug, isoniazid (INH). KatG readily forms amino acid-based radicals during turnover with alkyl peroxides, and this work focuses on extending the identification and characterization of radicals forming on the millisecond to second time scale. Rapid freeze-quench electron paramagnetic resonance spectroscopy (RFQ-EPR) reveals a change in the structure of the initially formed radical in the presence of INH. Heme pocket binding of the drug and knowledge that KatG[Y229F] lacks this signal provides evidence for radical formation on residue Tyr(229). High field RFQ-EPR spectroscopy confirmed a tryptophanyl radical signal, and new analyses of X-band RFQ-EPR spectra also established its presence. High field EPR spectroscopy also confirmed that the majority radical species is a tyrosyl radical. Site-directed mutagenesis, along with simulations of EPR spectra based on x-ray structural data for particular tyrosine and tryptophan residues, enabled assignments based on predicted hyperfine coupling parameters. KatG mutants W107F, Y229F, and the double mutant W107F/Y229F showed alteration in type and yield of radical species. Results are consistent with formation of a tyrosyl radical reasonably assigned to residue Tyr(229) within the first few milliseconds of turnover. This is followed by a mixture of tyrosyl and tryptophanyl radical species and finally to only a tyrosyl radical on residue Tyr(353), which lies more distant from the heme. The radical processing of enzyme lacking the Trp(107)-Tyr(229)-Met(255) adduct (found as a unique structural feature of catalase-peroxidases) is suggested to be a reasonable assignment of the phenomena.


Asunto(s)
Proteínas Bacterianas/química , Catalasa/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón , Radicales Libres/química , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Catálisis , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Factores de Tiempo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...