Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(7): e0425623, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38785428

RESUMEN

Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in Zymomonas mobilis, the substrates of IspG and IspH accumulate in cells in response to O2, suggesting possible lability of their [4Fe-4S] clusters. Here, we show using complementation assays in Escherichia coli that even under anaerobic conditions, Z. mobilis IspG and IspH are not as functional as their E. coli counterparts, requiring higher levels of expression to rescue viability. A deficit of the sulfur utilization factor (SUF) Fe-S cluster biogenesis pathway did not explain the reduced function of Z. mobilis IspG and IspH since no improvement in viability was observed in E. coli expressing the Z. mobilis SUF pathway or having increased expression of the E. coli SUF pathway. Complementation of single and double mutants with various combinations of Z. mobilis and E. coli IspG and IspH indicated that optimal growth required the pairing of IspG and IspH from the same species. Furthermore, Z. mobilis IspH conferred an O2-sensitive growth defect to E. coli that could be partially rescued by co-expression of Z. mobilis IspG. In vitro analysis showed O2 sensitivity of the [4Fe-4S] cluster of both Z. mobilis IspG and IspH. Altogether, our data indicate an important role of the cognate protein IspG in Z. mobilis IspH function under both aerobic and anaerobic conditions. IMPORTANCE: Isoprenoids are one of the largest classes of natural products, exhibiting diversity in structure and function. They also include compounds that are essential for cellular life across the biological world. In bacteria, isoprenoids are derived from two precursors, isopentenyl diphosphate and dimethylallyl diphosphate, synthesized primarily by the methylerythritol phosphate pathway. The aerotolerant Z. mobilis has the potential for methylerythritol phosphate pathway engineering by diverting some of the glucose that is typically efficiently converted into ethanol to produce isoprenoid precursors to make bioproducts and biofuels. Our data revealed the surprising finding that Z. mobilis IspG and IspH need to be co-optimized to improve flux via the methyl erythritol phosphate pathway in part to evade the oxygen sensitivity of IspH.


Asunto(s)
Proteínas Bacterianas , Eritritol , Escherichia coli , Zymomonas , Zymomonas/metabolismo , Zymomonas/enzimología , Zymomonas/genética , Eritritol/metabolismo , Eritritol/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Terpenos/metabolismo , Oxidorreductasas
2.
Biochim Biophys Acta Mol Cell Res ; 1871(6): 119749, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763301

RESUMEN

The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E. coli, but in bacteria of diverse lifestyles. Notably, pathogenic bacteria have exploited the ability of IscR to respond to changes in oxygen tension, oxidative and nitrosative stress, and iron availability to navigate their trajectory in their respective hosts as changes in these cues are frequently encountered during host infection. In this review, we highlight these broader roles of IscR in different cellular processes and, in particular, discuss the importance of IscR as a virulence factor for many bacterial pathogens.


Asunto(s)
Proteínas de Escherichia coli , Homeostasis , Proteínas Hierro-Azufre , Hierro , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Hierro/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética
3.
PLoS Genet ; 18(7): e1010321, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35901167

RESUMEN

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor. While deletion of iscR or ymoA has been shown to decrease and increase LcrF expression and type III secretion, respectively, the role of H-NS in this system has not been definitively established because hns is an essential gene in Yersinia. Using CRISPRi knockdown of hns, we show that hns depletion causes derepression of lcrF. Furthermore, we find that while YmoA is dispensable for H-NS binding to the lcrF promoter, YmoA binding to H-NS is important for H-NS repressive activity. We bioinformatically identified three H-NS binding regions within the lcrF promoter and demonstrate binding of H-NS to these sites in vivo using chromatin immunoprecipitation. Using promoter truncation and binding site mutation analysis, we show that two of these H-NS binding regions are important for H-NS/YmoA-mediated repression of the lcrF promoter. Surprisingly, we find that IscR is dispensable for lcrF transcription in the absence of H-NS/YmoA. Indeed, IscR-dependent regulation of LcrF and type III secretion in response to changes in oxygen, such as those Yersinia is predicted to experience during host infection, only occurs in the presence of an H-NS/YmoA complex. These data suggest that, in the presence of host tissue cues that drive sufficient IscR expression, IscR can act as a roadblock to H-NS/YmoA-dependent repression of RNA polymerase at the lcrF promoter to turn on T3SS expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Yersinia , Proteínas Bacterianas/metabolismo , Histonas/genética , Oxígeno/metabolismo , Yersinia/genética , Yersinia/metabolismo
4.
PLoS Genet ; 18(6): e1010270, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767559

RESUMEN

Bacterial two-component systems (TCSs) often function through the detection of an extracytoplasmic stimulus and the transduction of a signal by a transmembrane sensory histidine kinase. This kinase then initiates a series of reversible phosphorylation modifications to regulate the activity of a cognate, cytoplasmic response regulator as a transcription factor. Several TCSs have been implicated in the regulation of cell cycle dynamics, cell envelope integrity, or cell wall development in Escherichia coli and other well-studied Gram-negative model organisms. However, many α-proteobacteria lack homologs to these regulators, so an understanding of how α-proteobacteria orchestrate extracytoplasmic events is lacking. In this work we identify an essential TCS, CenKR (Cell envelope Kinase and Regulator), in the α-proteobacterium Rhodobacter sphaeroides and show that modulation of its activity results in major morphological changes. Using genetic and biochemical approaches, we dissect the requirements for the phosphotransfer event between CenK and CenR, use this information to manipulate the activity of this TCS in vivo, and identify genes that are directly and indirectly controlled by CenKR in Rb. sphaeroides. Combining ChIP-seq and RNA-seq, we show that the CenKR TCS plays a direct role in maintenance of the cell envelope, regulates the expression of subunits of the Tol-Pal outer membrane division complex, and indirectly modulates the expression of peptidoglycan biosynthetic genes. CenKR represents the first TCS reported to directly control the expression of Tol-Pal machinery genes in Gram-negative bacteria, and we predict that homologs of this TCS serve a similar function in other closely related organisms. We propose that Rb. sphaeroides genes of unknown function that are directly regulated by CenKR play unknown roles in cell envelope biosynthesis, assembly, and/or remodeling in this and other α-proteobacteria.


Asunto(s)
Proteínas de Escherichia coli , Rhodobacter sphaeroides , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
5.
mBio ; 12(3): e0063321, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34060331

RESUMEN

The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection. IMPORTANCE How bacteria adapt to the changing environment within the host is critical for their ability to survive and cause disease. For example, the mammalian host severely restricts iron availability to limit bacterial growth, referred to as nutritional immunity. Here, we show that pathogenic Yersinia use the iron-sulfur (Fe-S) cluster regulator IscR, a factor critical for pathogenesis, to sense iron availability and regulate multiple pathways known or predicted to contribute to virulence. Under low iron conditions that mimic those Yersinia encounter during infection, IscR levels increase, leading to modulation of genes involved in iron metabolism, stress resistance, cell envelope remodeling, and subversion of host defenses. These data suggest that IscR senses nutritional immunity to coordinate processes important for bacterial survival within the mammalian host.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano , Genómica/métodos , Factores de Virulencia/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Proteínas Bacterianas/metabolismo , Sitios de Unión , Humanos , Hierro/metabolismo , Regiones Promotoras Genéticas , Virulencia , Yersinia pestis/genética , Yersinia pseudotuberculosis/metabolismo , Infecciones por Yersinia pseudotuberculosis/microbiología
6.
J Bacteriol ; 202(3)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712282

RESUMEN

Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Adenosina Trifosfatasas/genética , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Proteínas Portadoras/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/genética , Operón/genética
7.
PLoS Pathog ; 15(12): e1008001, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869388

RESUMEN

The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis.


Asunto(s)
Hierro/metabolismo , Oxígeno/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Infecciones por Yersinia pseudotuberculosis/inmunología , Animales , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Transcripción Genética , Yersinia/metabolismo , Yersinia pseudotuberculosis/patogenicidad , Infecciones por Yersinia pseudotuberculosis/metabolismo
8.
Elife ; 82019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31650957

RESUMEN

Temperate bacteriophages are viruses that can incorporate their genomes into their bacterial hosts, existing there as prophages that refrain from killing the host cell until induced. Prophages are largely quiescent, but they can alter host phenotype through factors encoded in their genomes (often virulence factors) or by disrupting host genes as a result of integration. Here we describe another mechanism by which a prophage can modulate host phenotype. We show that a temperate phage that integrates in Escherichia coli reprograms host regulation of an anaerobic respiratory system, thereby inhibiting a bet hedging strategy. The phage exerts this effect by upregulating a host-encoded signal transduction protein through transcription initiated from a phage-encoded promoter. We further show that this phenomenon occurs not only in a laboratory strain of E. coli, but also in a natural isolate that contains a prophage at this site.


Asunto(s)
Colifagos/genética , Metabolismo Energético , Escherichia coli/metabolismo , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Integración Viral , Anaerobiosis , Transducción de Señal
9.
Front Microbiol ; 10: 1642, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379789

RESUMEN

The ability to conserve energy in the presence or absence of oxygen provides a metabolic versatility that confers an advantage in natural ecosystems. The switch between alternative electron transport systems is controlled by the fumarate nitrate reduction transcription factor (FNR) that senses oxygen via an oxygen-sensitive [4Fe-4S]2+ iron-sulfur cluster. Under O2 limiting conditions, FNR plays a key role in allowing bacteria to transition from aerobic to anaerobic lifestyles. This is thought to occur via transcriptional activation of genes involved in anaerobic respiratory pathways and by repression of genes involved in aerobic energy production. The Proteobacterium Acidithiobacillus ferrooxidans is a model species for extremely acidophilic microorganisms that are capable of aerobic and anaerobic growth on elemental sulfur coupled to oxygen and ferric iron reduction, respectively. In this study, an FNR-like protein (FNRAF) was discovered in At. ferrooxidans that exhibits a primary amino acid sequence and major motifs and domains characteristic of the FNR family of proteins, including an effector binding domain with at least three of the four cysteines known to coordinate an [4Fe-4S]2+ center, a dimerization domain, and a DNA binding domain. Western blotting with antibodies against Escherichia coli FNR (FNREC) recognized FNRAF. FNRAF was able to drive expression from the FNR-responsive E. coli promoter PnarG, suggesting that it is functionally active as an FNR-like protein. Upon air exposure, FNRAF demonstrated an unusual lack of sensitivity to oxygen compared to the archetypal FNREC. Comparison of the primary amino acid sequence of FNRAF with that of other natural and mutated FNRs, including FNREC, coupled with an analysis of the predicted tertiary structure of FNRAF using the crystal structure of the related FNR from Aliivibrio fisheri as a template revealed a number of amino acid changes that could potentially stabilize FNRAF in the presence of oxygen. These include a truncated N terminus and amino acid changes both around the putative Fe-S cluster coordinating cysteines and also in the dimer interface. Increased O2 stability could allow At. ferrooxidans to survive in environments with fluctuating O2 concentrations, providing an evolutionary advantage in natural, and engineered environments where oxygen gradients shape the bacterial community.

11.
Artículo en Inglés | MEDLINE | ID: mdl-29520342

RESUMEN

Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron.


Asunto(s)
Hemo/metabolismo , Hemina/genética , Hierro/metabolismo , Infecciones por Yersinia pseudotuberculosis/metabolismo , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Orden Génico , Sitios Genéticos , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética , Infecciones por Yersinia pseudotuberculosis/sangre
12.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502970

RESUMEN

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Asunto(s)
Escherichia coli/metabolismo , Transducción de Señal , Aerobiosis , Anaerobiosis , Secuencia de Bases , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacología , Oxígeno/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
13.
Antioxid Redox Signal ; 29(18): 1830-1840, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28990402

RESUMEN

SIGNIFICANCE: The Escherichia coli regulatory protein fumarate nitrate reduction (FNR) mediates a global transcriptional response upon O2 deprivation. Spanning nearly 40 years of research investigations, our understanding of how FNR senses and responds to O2 has considerably progressed despite a lack of structural information for most of that period. This knowledge has established the paradigm for how facultative anaerobic bacteria sense changes in O2 tension. Recent Advances: Recently, the X-ray crystal structure of Aliivibrio fischeri FNR with its [4Fe-4S] cluster cofactor was solved and has provided valuable new insight into FNR structure and function. These findings have alluded to the conformational changes that may occur to alter FNR activity in response to O2. CRITICAL ISSUES: Here, we review the major features of this structure in context of previously acquired data. In doing so, we discuss additional mechanistic aspects of FNR function that warrant further investigation. FUTURE DIRECTIONS: To complement the [4Fe-4S]-FNR structure, the structures of apo-FNR and FNR bound to DNA or RNA polymerase are needed. Together, these structures would elevate our understanding of how ligation of its [4Fe-4S] cluster allows FNR to regulate transcription according to the level of environmental O2.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Modelos Moleculares
14.
Proc Natl Acad Sci U S A ; 114(46): 12261-12266, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087312

RESUMEN

The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis/genética , Hierro/metabolismo , Oxígeno/metabolismo , Proteínas Represoras/genética , Aerobiosis/genética , Anaerobiosis/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Operón , Proteínas Represoras/metabolismo
15.
Annu Rev Microbiol ; 69: 505-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488283

RESUMEN

Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Regulación Alostérica , Bacterias/genética , Bacterias/metabolismo , Coenzimas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/genética
16.
Biochim Biophys Acta ; 1853(6): 1284-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25450978

RESUMEN

Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Elementos de Respuesta , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/química , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína
17.
J Bacteriol ; 196(24): 4315-23, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25266384

RESUMEN

Fe-S cluster biogenesis is essential for the viability of most organisms. In Escherichia coli, this process requires either the housekeeping Isc or the stress-induced Suf pathway. The global regulator IscR coordinates cluster synthesis by repressing transcription of the isc operon by [2Fe-2S]-IscR and activating expression of the suf operon. We show that either [2Fe-2S]-IscR or apo-IscR can activate suf, making expression sensitive to mainly IscR levels and not the cluster state, unlike isc expression. We also demonstrate that in the absence of isc, IscR-dependent suf activation is essential since strains lacking both the Isc pathway and IscR were not viable unless Suf was expressed ectopically. Similarly, removal of the IscR binding site in the sufA promoter also led to a requirement for isc. Furthermore, suf expression was increased in a Δisc mutant, presumably due to increased IscR levels in this mutant. This was surprising because the iron-dependent repressor Fur, whose higher-affinity binding at the sufA promoter should occlude IscR binding, showed only partial repression. In addition, Fur derepression was not sufficient for viability in the absence of IscR and the Isc pathway, highlighting the importance of direct IscR activation. Finally, a mutant lacking Fur and the Isc pathway increased suf expression to the highest observed levels and nearly restored [2Fe-2S]-IscR activity, providing a mechanism for regulating IscR activity under stress conditions. Together, these findings have enhanced our understanding of the homeostatic mechanism by which cells use one regulator, IscR, to differentially control Fe-S cluster biogenesis pathways to ensure viability.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Factores de Transcripción/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factores de Transcripción/genética , Activación Transcripcional
18.
PLoS Pathog ; 10(6): e1004194, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945271

RESUMEN

Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coli iron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis ΔiscR mutant displayed decreased bacterial burden in Peyer's patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Proteínas de Escherichia coli/genética , Factores de Transcripción/genética , Factores de Virulencia/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Hígado/inmunología , Hígado/microbiología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ratones , Datos de Secuencia Molecular , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Regiones Promotoras Genéticas/genética , Unión Proteica , Alineación de Secuencia , Bazo/inmunología , Bazo/microbiología , Transcripción Genética , Transcriptoma/genética , Infecciones por Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/patología
19.
Mol Microbiol ; 87(3): 478-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23075318

RESUMEN

Fe-S clusters are essential across the biological world, yet how cells regulate expression of Fe-S cluster biogenesis pathways to cope with changes in Fe-S cluster demand is not well understood. Here, we describe the mechanism by which IscR, a [2Fe-2S] cluster-containing regulator of Escherichia coli, adjusts the synthesis of the Isc Fe-S biogenesis pathway to maintain Fe-S homeostasis. Our data indicate that a negative feedback loop operates to repress transcription of the iscRSUA-hscBA-fdx operon, encoding IscR and the Isc machinery, through binding of [2Fe-2S]-IscR to two upstream binding sites. IscR was shown to require primarily the Isc pathway for synthesis of its Fe-S cluster, providing a link between IscR activity and demands for Fe-S clusters through the levels of the Isc system. Surprisingly, the isc operon was more repressed under anaerobic conditions, indicating increased Fe-S cluster occupancy of IscR and decreased Fe-S cluster biogenesis demand relative to aerobic conditions. Consistent with this notion, overexpression of a Fe-S protein under aerobic conditions, but not under anaerobic conditions, led to derepression of P(iscR). Together, these data show how transcriptional control of iscRSUA-hscBA-fdx by [2Fe-2S]-IscR allows E. coli to respond efficiently to varying Fe-S demands.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Aerobiosis , Anaerobiosis , ADN Bacteriano/metabolismo , Escherichia coli/genética , Retroalimentación Fisiológica , Homeostasis , Operón , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética
20.
J Mol Biol ; 384(4): 798-811, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18938178

RESUMEN

In this study, the functions of two established Fe-S cluster biogenesis pathways, Isc (iron-sulfur cluster) and Suf (sulfur mobilization), under aerobic and anaerobic growth conditions were compared by measuring the activity of the Escherichia coli global anaerobic regulator FNR. A [4Fe-4S] cluster is required for FNR activity under anaerobic conditions. An assay of the expression of FNR-dependent promoters in strains containing various deletions of the iscSUAhscBAfdx operon revealed that, under anaerobic conditions, FNR activity was reduced by 60% in the absence of the Isc pathway. In contrast, a mutant lacking the entire Suf pathway had normal FNR activity, although overexpression of the suf operon fully rescued the anaerobic defect in FNR activity in strains lacking the Isc pathway. Expression of the sufA promoter and levels of SufD protein were upregulated by twofold to threefold in Isc(-) strains under anaerobic conditions, suggesting that increased expression of the Suf pathway may be partially responsible for the FNR activity remaining in strains lacking the Isc pathway. In contrast, use of the O(2)-stable [4Fe-4S] cluster FNR variant FNR-L28H showed that overexpression of the suf operon did not restore FNR activity to strains lacking the Isc pathway under aerobic conditions. In addition, FNR-L28H activity was more impaired under aerobic conditions than under anaerobic conditions. The greater requirement for the Isc pathway under aerobic conditions was not due to a change in the rate of Fe-S cluster acquisition by FNR-L28H under aerobic and anaerobic conditions, as shown by (55)Fe-labeling experiments. Using [(35)S]methionine pulse-chase assays, we observed that the Isc pathway, but not the Suf pathway, is the major pathway required for conversion of O(2)-inactivated apo-FNR into [4Fe-4S]FNR upon the onset of anaerobic growth conditions. Taken together, these findings indicate a major role for the Isc pathway in FNR Fe-S cluster biogenesis under both aerobic and anaerobic conditions.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Oxígeno/metabolismo , Azufre/metabolismo , Aerobiosis , Anaerobiosis , Escherichia coli/genética , Eliminación de Gen , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...