Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Leukemia ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284898

RESUMEN

The therapeutic potential of targeting PI3K/AKT/PTEN signalling in B-cell malignancies remains attractive. Whilst PI3K-α/δ inhibitors demonstrate clinical benefit in certain B-cell lymphomas, PI3K signalling inhibitors have been inadequate in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in part, due to treatment related toxicities. Clinically, AKT inhibitors exhibit a differentiated tolerability profile offering an alternative approach for treating patients with B-cell malignancies. To explore how AKT inhibition complements other potential therapeutics in the treatment of DLBCL patients, an in vitro combination screen was conducted across a panel of DLCBL cell lines. The AKT inhibitor, capivasertib, in combination with the BCL-2 inhibitor, venetoclax, produced notable therapeutic benefit in preclinical models of DLBCL. Capivasertib and venetoclax rapidly induced caspase and PARP cleavage in GCB-DLBCL PTEN wildtype cell lines and those harbouring PTEN mutations or reduced PTEN protein, driving prolonged tumour growth inhibition in DLBCL cell line and patient derived xenograft lymphoma models. The addition of the rituximab further deepened the durability of capivasertib and venetoclax responses in a RCHOP refractory DLBCL in vivo models. These findings provide preclinical evidence for the rational treatment combination of AKT and BCL-2 inhibitors using capivasertib and venetoclax respectively alongside anti-CD20 antibody supplementation for treatment of patients with DLBCL.

2.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658677

RESUMEN

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Asunto(s)
Acrilamidas , Resistencia a Antineoplásicos , Receptores ErbB , Indoles , Neoplasias Pulmonares , Mutación , Pirimidinas , Factores de Transcripción , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Gefitinib/farmacología , Vía de Señalización Hippo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas
3.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 994-1005, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532525

RESUMEN

Trastuzumab deruxtecan (T-DXd; DS-8201; ENHERTU®) is a human epithelial growth factor receptor 2 (HER2)-directed antibody drug conjugate (ADC) with demonstrated antitumor activity against a range of tumor types. Aiming to understand the relationship between antigen expression and downstream efficacy outcomes, T-DXd was administered in tumor-bearing mice carrying NCI-N87, Capan-1, JIMT-1, and MDA-MB-468 xenografts, characterized by varying HER2 levels. Plasma pharmacokinetics (PK) of total antibody, T-DXd, and released DXd and tumor concentrations of released DXd were evaluated, in addition to monitoring γΗ2AX and pRAD50 pharmacodynamic (PD) response. A positive relationship was observed between released DXd concentrations in tumor and HER2 expression, with NCI-N87 xenografts characterized by the highest exposures compared to the remaining cell lines. γΗ2AX and pRAD50 demonstrated a sustained increase over several days occurring with a time delay relative to tumoral-released DXd concentrations. In vitro investigations of cell-based DXd disposition facilitated the characterization of DXd kinetics across tumor cells. These outputs were incorporated into a mechanistic mathematical model, utilized to describe PK/PD trends. The model captured plasma PK across dosing arms as well as tumor PK in NCI-N87, Capan-1, and MDA-MB-468 models; tumor concentrations in JIMT-1 xenografts required additional parameter adjustments reflective of complex receptor dynamics. γΗ2AX longitudinal trends were well characterized via a unified PD model implemented across xenografts demonstrating the robustness of measured PD trends. This work supports the application of a mechanistic model as a quantitative tool, reliably projecting tumor payload concentrations upon T-DXd administration, as the first step towards preclinical-to-clinical translation.


Asunto(s)
Inmunoconjugados , Receptor ErbB-2 , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Trastuzumab/farmacocinética , Trastuzumab/farmacología , Receptor ErbB-2/metabolismo , Ratones , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Línea Celular Tumoral , Femenino , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/farmacología , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/administración & dosificación , Ratones Desnudos
4.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456804

RESUMEN

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
5.
Blood Cancer Discov ; 5(2): 95-105, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232314

RESUMEN

Combination therapy is an important part of cancer treatment and is often employed to overcome or prevent drug resistance. Preclinical screening strategies often prioritize synergistic drug combinations; however, studies of antibiotic combinations show that synergistic drug interactions can accelerate the emergence of resistance because resistance to one drug depletes the effect of both. In this study, we aimed to determine whether synergy drives the development of resistance in cancer cell lines using live-cell imaging. Consistent with prior models of tumor evolution, we found that when controlling for activity, drug synergy is associated with increased probability of developing drug resistance. We demonstrate that these observations are an expected consequence of synergy: the fitness benefit of resisting a drug in a combination is greater in synergistic combinations than in nonsynergistic combinations. These data have important implications for preclinical strategies aiming to develop novel combinations of cancer therapies with robust and durable efficacy. SIGNIFICANCE: Preclinical strategies to identify combinations for cancer treatment often focus on identifying synergistic combinations. This study shows that in AML cells combinations that rely on synergy can increase the likelihood of developing resistance, suggesting that combination screening strategies may benefit from a more holistic approach rather than focusing on drug synergy. See related commentary by Bhola and Letai, p. 81. This article is featured in Selected Articles from This Issue, p. 80.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Antibacterianos , Línea Celular , Terapia Combinada , Combinación de Medicamentos
6.
Sci Transl Med ; 12(541)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350132

RESUMEN

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Humanos , Mutación , Naftiridinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Pirazoles , Pirroles , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Triazinas , Urea/análogos & derivados , Factor A de Crecimiento Endotelial Vascular
7.
CPT Pharmacometrics Syst Pharmacol ; 9(9): 498-508, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453487

RESUMEN

Stability analysis, often overlooked in pharmacometrics, is essential to explore dynamical systems. The model developed by Friberg et al.1 to describe drug-induced hematotoxicity is widely used to support decisions across drug development, and parameter values are often identified from observed blood counts. We use stability analysis to study the parametric dependence of stable and unstable solutions of several Friberg-type models and highlight the risks associated with system instability in the context of nonlinear mixed effects modeling. We emphasize the consequences of unstable solutions on prediction performance by demonstrating nonbiological system behaviors in a real case study of drug-induced thrombocytopenia. Ultimately, we provide simple criteria for identifying parameters associated with stable solutions of Friberg-type models. For instance, in the original Friberg model, we find that stability depends only on the parameter that governs the feedback from peripheral cells to progenitors and provide the exact range of values that results in stable solutions.


Asunto(s)
Desarrollo de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Hematopoyesis/efectos de los fármacos , Trombocitopenia/inducido químicamente , Biomarcadores Farmacológicos/sangre , Recuento de Células Sanguíneas/estadística & datos numéricos , Simulación por Computador , Retroalimentación , Humanos , Modelos Biológicos , Dinámicas no Lineales , Análisis de Sistemas
8.
Br J Pharmacol ; 177(15): 3568-3590, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32335903

RESUMEN

BACKGROUND AND PURPOSE: Cardiovascular safety is one of the most frequent causes of safety-related attrition both preclinically and clinically. Preclinical cardiovascular safety is routinely assessed using dog telemetry monitoring key cardiovascular functions. The present research was to develop a semi-mechanistic modelling platform to simultaneously assess changes in contractility (dPdtmax ), heart rate (HR) and mean arterial pressure (MAP) in preclinical studies. EXPERIMENTAL APPROACH: Data from dPdtmax , HR, preload (left ventricular end-diastolic pressure [LVEDP]) and MAP were available from dog telemetry studies after dosing with atenolol (n = 27), salbutamol (n = 5), L-NG -nitroarginine methyl ester (L-NAME; n = 4), milrinone (n = 4), verapamil (n = 12), dofetilide (n = 8), flecainide (n = 4) and AZ001 (n = 14). Literature model for rat CV function was used for the structural population pharmacodynamic model development. LVEDP was evaluated as covariate to account for the effect of preload on dPdtmax . KEY RESULTS: The model was able to describe drug-induced changes in dPdtmax , HR and MAP for all drugs included in the developed framework adequately, by incorporating appropriate drug effects on dPdtmax , HR and/or total peripheral resistance. Consistent with the Starling's law, incorporation of LVEDP as a covariate on dPdtmax to correct for the preload effect was found to be statistically significant. CONCLUSIONS AND IMPLICATIONS: The contractility and haemodynamics semi-mechanistic modelling platform accounts for diurnal variation, drug-induced changes and inter-animal variation. It can be used to hypothesize and evaluate pharmacological effects and provide a holistic cardiovascular safety profile for new drugs.


Asunto(s)
Sistema Cardiovascular , Contracción Miocárdica , Animales , Perros , Frecuencia Cardíaca , Hemodinámica , Ratas , Telemetría
9.
CPT Pharmacometrics Syst Pharmacol ; 8(11): 858-868, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31508894

RESUMEN

Haematological toxicity associated with cancer therapeutics is monitored by changes in blood cell count, and their primary effect is on proliferative progenitors in the bone marrow. Using observations in rat bone marrow and blood, we characterize a mathematical model that comprises cell proliferation and differentiation of the full haematopoietic phylogeny, with interacting feedback loops between lineages in homeostasis as well as following carboplatin exposure. We accurately predicted the temporal dynamics of several mature cell types related to carboplatin-induced bone marrow toxicity and identified novel insights into haematopoiesis. Our model confirms a significant degree of plasticity within bone marrow cells, with the number and type of both early progenitors and circulating cells affecting cell balance, via feedback mechanisms, through fate decisions of the multipotent progenitors. We also demonstrated cross-species translation of our predictions to patients, applying the same core model structure and considering differences in drug-dependent and physiology-dependent parameters.


Asunto(s)
Médula Ósea/efectos de los fármacos , Carboplatino/toxicidad , Biología de Sistemas/métodos , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Homeostasis , Humanos , Modelos Teóricos , Ratas
10.
Sci Rep ; 9(1): 9619, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270362

RESUMEN

Functional human-on-a-chip systems hold great promise to enable quantitative translation to in vivo outcomes. Here, we explored this concept using a pumpless heart only and heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine. There was a time dependent drug-induced increase in field potential duration in the cardiac compartment in response to terfenadine and that response was modulated using a metabolically competent liver module that converted terfenadine to fexofenadine. Using this data, a mathematical model was developed to predict the effect of terfenadine in preclinical species. Developing confidence that microphysiological models could have a transformative effect on drug discovery, we also tested a previously discovered proprietary AstraZeneca small molecule and correctly determined the cardiotoxic response to its metabolite in the heart:liver system. Overall our findings serve as a guiding principle to future investigations of temporal concentration response relationships in these innovative in vitro models, especially, if validated across multiple time frames, with additional pharmacological mechanisms and molecules representing a broad chemical diversity.


Asunto(s)
Procedimientos Analíticos en Microchip , Modelos Teóricos , Farmacocinética , Descubrimiento de Drogas/métodos , Humanos , Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip/métodos , Modelos Biológicos , Especificidad de Órganos , Investigación Biomédica Traslacional/métodos
11.
Toxicol Sci ; 169(1): 54-69, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649541

RESUMEN

The failure to predict kidney toxicity of new chemical entities early in the development process before they reach humans remains a critical issue. Here, we used primary human kidney cells and applied a systems biology approach that combines multidimensional datasets and machine learning to identify biomarkers that not only predict nephrotoxic compounds but also provide hints toward their mechanism of toxicity. Gene expression and high-content imaging-derived phenotypical data from 46 diverse kidney toxicants were analyzed using Random Forest machine learning. Imaging features capturing changes in cell morphology and nucleus texture along with mRNA levels of HMOX1 and SQSTM1 were identified as the most powerful predictors of toxicity. These biomarkers were validated by their ability to accurately predict kidney toxicity of four out of six candidate therapeutics that exhibited toxicity only in late stage preclinical/clinical studies. Network analysis of similarities in toxic phenotypes was performed based on live-cell high-content image analysis at seven time points. Using compounds with known mechanism as reference, we could infer potential mechanisms of toxicity of candidate therapeutics. In summary, we report an approach to generate a multidimensional biomarker panel for mechanistic de-risking and prediction of kidney toxicity in in vitro for new therapeutic candidates and chemical entities.


Asunto(s)
Minería de Datos , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/efectos de los fármacos , Aprendizaje Automático , Biología de Sistemas , Toxicología/métodos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Bases de Datos Factuales , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Cultivo Primario de Células , Medición de Riesgo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
12.
Chem Res Toxicol ; 31(11): 1119-1127, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30350600

RESUMEN

Adverse events resulting from drug therapy can be a cause of drug withdrawal, reduced and or restricted clinical use, as well as a major economic burden for society. To increase the safety of new drugs, there is a need to better understand the mechanisms causing the adverse events. One way to derive new mechanistic hypotheses is by linking data on drug adverse events with the drugs' biological targets. In this study, we have used data mining techniques and mutual information statistical approaches to find associations between reported adverse events collected from the FDA Adverse Event Reporting System and assay outcomes from ToxCast, with the aim to generate mechanistic hypotheses related to structural cardiotoxicity (morphological damage to cardiomyocytes and/or loss of viability). Our workflow identified 22 adverse event-assay outcome associations. From these associations, 10 implicated targets could be substantiated with evidence from previous studies reported in the literature. For two of the identified targets, we also describe a more detailed mechanism, forming putative adverse outcome pathways associated with structural cardiotoxicity. Our study also highlights the difficulties deriving these type of associations from the very limited amount of data available.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Cardiopatías/inducido químicamente , Modelos Teóricos , Sistemas de Registro de Reacción Adversa a Medicamentos , Animales , Minería de Datos , Bases de Datos Factuales , Humanos , Estados Unidos , United States Food and Drug Administration
13.
Toxicol Sci ; 166(1): 123-130, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060248

RESUMEN

CKA, a chemokine receptor antagonist intended for treating inflammatory conditions, produced dose-dependent hepatotoxicity in rats but advanced into the clinic where single doses of CKA up to 600 mg appeared safe in humans. Because existing toxicological platforms used during drug development are not perfectly predictive, a quantitative systems toxicology model investigated the hepatotoxic potential of CKA in humans and rats through in vitro assessments of CKA on mitochondrial respiration, oxidative stress, and bile acid transporters. DILIsym predicted that single doses of CKA caused serum ALT >3xULN in a subset of the simulated rat population, while single doses in a simulated human population did not produce serum ALT elevations. Species differences were largely attributed to differences in liver exposure, but increased sensitivity to inhibition of mitochondrial respiration in the rat also contributed. We conclude that mechanistic modeling can elucidate species differences in the hepatotoxic potential of drug candidates.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Proteínas Portadoras/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Indoles/toxicidad , Glicoproteínas de Membrana/antagonistas & inhibidores , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Receptores de Quimiocina/antagonistas & inhibidores , Adulto , Animales , Ácidos Carboxílicos/administración & dosificación , Ácidos Carboxílicos/farmacocinética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Células Hep G2 , Humanos , Indoles/administración & dosificación , Indoles/farmacocinética , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Ratas Wistar , Especificidad de la Especie , Distribución Tisular
14.
Clin Pharmacol Ther ; 104(4): 644-654, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29604045

RESUMEN

Balancing antitumor efficacy with toxicity is a significant challenge, and drug-induced myelosuppression is a common dose-limiting toxicity of cancer treatments. Mathematical modeling has proven to be a powerful ally in this field, scaling results from animal models to humans, and designing optimized treatment regimens. Here we outline existing mathematical approaches for studying bone marrow toxicity, identify gaps in current understanding, and make future recommendations to advance this vital field of safety research further.


Asunto(s)
Antineoplásicos/efectos adversos , Médula Ósea/efectos de los fármacos , Enfermedades Hematológicas/inducido químicamente , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Modelos Biológicos , Pruebas de Toxicidad/métodos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Médula Ósea/patología , Médula Ósea/fisiopatología , Linaje de la Célula , Relación Dosis-Respuesta a Droga , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/fisiopatología , Células Madre Hematopoyéticas/patología , Humanos , Medición de Riesgo
15.
CPT Pharmacometrics Syst Pharmacol ; 7(3): 135-146, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29349875

RESUMEN

A cross-industry survey was conducted to assess the landscape of preclinical quantitative systems pharmacology (QSP) modeling within pharmaceutical companies. This article presents the survey results, which provide insights on the current state of preclinical QSP modeling in addition to future opportunities. Our results call attention to the need for an aligned definition and consistent terminology around QSP, yet highlight the broad applicability and benefits preclinical QSP modeling is currently delivering.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/normas , Farmacología Clínica/métodos , Diseño de Fármacos , Descubrimiento de Drogas/normas , Industria Farmacéutica , Humanos , Modelos Biológicos , Farmacología Clínica/normas , Encuestas y Cuestionarios
16.
Br J Pharmacol ; 175(4): 618-630, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29161763

RESUMEN

BACKGROUND AND PURPOSE: Several anti-angiogenic cancer drugs that inhibit VEGF receptor (VEGFR) signalling for efficacy are associated with a 15-60% incidence of hypertension. Tyrosine kinase inhibitors (TKIs) that have off-target activity at VEGFR-2 may also cause blood pressure elevation as an undesirable side effect. Therefore, the ability to translate VEGFR-2 off-target potency into blood pressure elevation would be useful in development of novel TKIs. Here, we have sought to quantify the relationship between VEGFR-2 inhibition and blood pressure elevation for a range of kinase inhibitors. EXPERIMENTAL APPROACH: Porcine aortic endothelial cells overexpressing VEGFR-2 (PAE) were used to determine IC50 for VEGFR-2 phosphorylation. These IC50 values were compared with published reports of exposure attained during clinical use and the corresponding incidence of all-grade hypertension. Unbound average plasma concentration (Cav,u ) was selected to be the most appropriate pharmacokinetic parameter. The pharmacokinetic-pharmacodynamic (PKPD) relationship for blood pressure elevation was investigated for selected kinase inhibitors, using data derived either from clinical papers or from rat telemetry experiments. KEY RESULTS: All-grade hypertension was predominantly observed when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . Furthermore, based on the PKPD analysis, an exposure-dependent blood pressure elevation >1 mmHg was observed only when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . CONCLUSIONS AND IMPLICATIONS: Taken together, these data show that the risk of blood pressure elevation is proportional to the amount of VEGFR-2 inhibition, and a margin of >10-fold between VEGFR-2 IC50 and Cav,u appears to confer a minimal risk of hypertension.


Asunto(s)
Inhibidores de la Angiogénesis/toxicidad , Presión Sanguínea/fisiología , Hipertensión/inducido químicamente , Inhibidores de Proteínas Quinasas/toxicidad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Axitinib , Presión Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/metabolismo , Imidazoles/toxicidad , Indazoles/toxicidad , Ratas , Porcinos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Clin Pharmacol Ther ; 103(2): 199-201, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194584

RESUMEN

Despite major scientific investments, safety accounts for significant pipeline attrition, especially in late preclinical and early clinical development. Many failures are due to difficulty interpreting safety signals or difficulty optimizing schedules of compounds with narrow therapeutic margins. Model-informed translation can address these challenges, both through "forward" translation of early signals to future scenarios, as well as through "reverse" translation of safety data into mechanistic insight.


Asunto(s)
Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Medicina Basada en la Evidencia/métodos , Pruebas de Toxicidad/métodos , Investigación Biomédica Traslacional/métodos , Animales , Minería de Datos , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Humanos , Aprendizaje , Modelos Animales , Modelos Teóricos , Seguridad del Paciente , Medición de Riesgo , Factores de Tiempo
18.
CPT Pharmacometrics Syst Pharmacol ; 7(1): 26-33, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28941225

RESUMEN

Gastrointestinal (GI) adverse events (AEs) are frequently dose limiting for oncology agents, requiring extensive clinical testing of alternative schedules to identify optimal dosing regimens. Here, we develop a translational mathematical model to predict these clinical AEs starting from preclinical GI toxicity data. The model structure incorporates known biology and includes stem cells, daughter cells, and enterocytes. Published data, including cellular numbers and division times, informed the system parameters for humans and rats. The drug-specific parameters were informed with preclinical histopathology data from rats treated with irinotecan. The model fit the rodent irinotecan-induced pathology changes well. The predicted time course of enterocyte loss in patients treated with weekly doses matched observed AE profiles. The model also correctly predicts a lower level of AEs for every 3 weeks (Q3W), as compared to the weekly schedule.


Asunto(s)
Antineoplásicos/administración & dosificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Tracto Gastrointestinal/efectos de los fármacos , Irinotecán/administración & dosificación , Modelos Biológicos , Biología de Sistemas/métodos , Animales , Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Tracto Gastrointestinal/fisiología , Humanos , Irinotecán/toxicidad , Valor Predictivo de las Pruebas , Especificidad de la Especie , Investigación Biomédica Traslacional
19.
Annu Rev Pharmacol Toxicol ; 58: 65-82, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29029591

RESUMEN

Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos
20.
Drug Discov Today ; 22(10): 1447-1459, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28476536

RESUMEN

With inadequate efficacy being the primary cause for the attrition of drug candidates in clinical development, the need to better predict clinical efficacy earlier in the drug development process has increased in importance in the pharmaceutical industry. Here, we review current applications of translational pharmacokinetic-pharmacodynamic (PK-PD) modeling of preclinical data in the pharmaceutical industry, including best practices. Preclinical translational PK-PD modeling has been used in many therapeutic areas and has been impactful to drug development. The role of preclinical translational PK-PD modeling in drug discovery and development will continue to evolve and broaden, given that its broad implementation in the pharmaceutical industry is relatively recent and many opportunities still exist for its further application.


Asunto(s)
Descubrimiento de Drogas/métodos , Industria Farmacéutica/métodos , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...