Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38808745

RESUMEN

Cavitation in supercooled water has been induced by the short ultrasound pulses of an ultrasonic horn driven at 20 kHz. The cavitation during the ultrasonic pulses and occasionally the crystallization events thereafter have been imaged by a high-speed camera. The probability of ice crystallization in dependence on the pulse duration and temperature showed a high chance for the water to remain liquid if sufficiently short bursts of moderate acoustic power were applied. This regime has been used for the assessment of sonoluminescence (SL) from the generated cavitation bubbles in the supercooled liquid state. To this end, light emitting events were summed up over a number of ultrasonic pulses by an image intensifier. SL appeared mostly directly under the tip of the ultrasonic horn and sometimes also a few millimeters below the tip. The intensity of SL events showed a slight rise for a decrease in temperature, i.e., for an increase in supercooling. This behavior is in accord with the SL dependence on temperature above the freezing point and might be attributed to a further lowering of vapor pressure. An increase in the bubble collapse peak temperature for increased supercooling is calculated on the basis of spherical bubble model calculations, which supports the findings. The simulations predict further that the peak temperature will fall off again beyond a certain supercooling level.

2.
Exp Fluids ; 65(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313751

RESUMEN

In this work, we study the jetting dynamics of individual cavitation bubbles using x-ray holographic imaging and high-speed optical shadowgraphy. The bubbles are induced by a focused infrared laser pulse in water near the surface of a flat, circular glass plate, and later probed with ultrashort x-ray pulses produced by an x-ray free-electron laser (XFEL). The holographic imaging can reveal essential information of the bubble interior that would otherwise not be accessible in the optical regime due to obscuration or diffraction. The influence of asymmetric boundary conditions on the jet's characteristics is analysed for cases where the axial symmetry is perturbed and curved liquid filaments can form inside the cavity. The x-ray images demonstrate that when oblique jets impact the rigid boundary, they produce a non-axisymmetric splash which grows from a moving stagnation point. Additionally, the images reveal the formation of complex gas/liquid structures inside the jetting bubbles that are invisible to standard optical microscopy. The experimental results are analysed with the assistance of full three-dimensional numerical simulations of the Navier-Stokes equations in their compressible formulation, which allow a deeper understanding of the distinctive features observed in the x-ray holographic images. In particular, the effects of varying the dimensionless stand-off distances measured from the initial bubble location to the surface of the solid plate and also to its nearest edge are addressed using both experiments and simulations. A relation between the jet tilting angle and the dimensionless bubble position asymmetry is derived. The present study provides new insights into bubble jetting and demonstrates the potential of x-ray holography for future investigations in this field. Supplementary Information: The online version contains supplementary material available at 10.1007/s00348-023-03759-9.

3.
Ultrason Sonochem ; 89: 106060, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36116243

RESUMEN

A model for acoustic cavitation flows able to depict large geometries and time scales is proposed. It is based on the Euler-Lagrange approach incorporating a novel Helmholtz solver with a non-linear acoustic attenuation model. The method is able to depict a polydisperse bubble population, which may vary locally. The model is verified and analyzed in a setup with a large sonotrode. Influences of the initial void fraction and the population type are studied. The results show that the velocity is strongly influenced by these parameters. Furthermore, the largest bubbles determine the highest pressure amplitude reached in the domain, which corresponds to the Blake threshold of these bubbles. Additionally, a validation is performed with a small sonotrode. The model reproduces most of the experimentally observed phenomena. In the experiments, neighboring bubbles are found which move in different directions depending on their size. The numerical results show that the responsible mechanism here is the reversal of the primary Bjerknes force at a certain pressure amplitude.

4.
Ultrason Sonochem ; 75: 105611, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34119738

RESUMEN

It is shown that a liquid slug in gas-liquid segmented flow in microchannels can act as an acoustic resonator to disperse large amounts of small liquid droplets, commonly referred to as atomization, into the gas phase. We investigate the principles of acoustic resonance within a liquid slug through experimental analysis and numerical simulation. A mechanism of atomization in the confined channels and a hypothesis based on high-speed image analysis that links acoustic resonance within a liquid slug with the observed atomization is proposed. The observed phenomenon provides a novel source of confined micro sprays and could be an avenue, amongst others, to overcome mass transfer limitations for gas-liquid processes in flow.

5.
J Synchrotron Radiat ; 28(Pt 3): 987-994, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950007

RESUMEN

Single-pulse holographic imaging at XFEL sources with 1012 photons delivered in pulses shorter than 100 fs reveal new quantitative insights into fast phenomena. Here, a timing and synchronization scheme for stroboscopic imaging and quantitative analysis of fast phenomena on time scales (sub-ns) and length-scales (≲100 nm) inaccessible by visible light is reported. A fully electronic delay-and-trigger system has been implemented at the MID station at the European XFEL, and applied to the study of emerging laser-driven cavitation bubbles in water. Synchronization and timing precision have been characterized to be better than 1 ns.

6.
J Synchrotron Radiat ; 28(Pt 1): 52-63, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399552

RESUMEN

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.

7.
Ultrason Sonochem ; 67: 105067, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32380373

RESUMEN

The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3µm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3µm and 6µm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6µm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.

8.
Ultrason Sonochem ; 55: 383-394, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30981684

RESUMEN

Acoustic cavitation typically forms a variety of bubble structures of generally unknown and broad size distributions. As the bubbles strongly oscillate, their (equilibrium) sizes are not directly observable. Here, a method is presented to experimentally determine the size distribution in bubble populations from high-speed imaging of the bubbles in oscillation. To this end, a spherical bubble model is applied in statistical fashion. This technique is applied to several experimentally realized bubble structures: streamer filaments, clusters, and a peculiar structure we report here on, the acoustically cavitated jet. It is generated by the sonication of a submerged jet to produce abundant cavitation at low flow velocities. Our analysis is complemented by numerical exploration of the hydrodynamic and acoustic properties of the experimental configuration in which the observed bubble structures are formed.

9.
Ultrason Sonochem ; 48: 39-50, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080564

RESUMEN

The interest in application of ultrasonic cavitation for cleaning and surface treatment processes has increased greatly in the last decades. However, not much is known about the behavior of cavitation bubbles inside the microstructural features of the solid substrates. Here we report on an experimental study on dynamics of acoustically driven (38.5 kHz) cavitation bubbles inside the blind and through holes of PMMA plates by using high-speed imaging. Various diameters of blind (150, 200, 250 and 1000 µm) and through holes (200 and 1000 µm) were investigated. Gas bubbles are usually trapped in the holes during substrate immersion in the liquid thus preventing their complete wetting. We demonstrate that trapped gas can be successfully removed from the holes under ultrasound agitation. Besides the primary Bjerknes force and acoustic streaming, the shape oscillations of the trapped gas bubble seem to be a driving force for bubble removal out of the holes. We further discuss the bubble dynamics inside microholes for water and Cu2+ salt solution. It is found that the hole diameter and partly the type of liquid media influences the number, size and dynamics of the cavitation bubbles. The experiments also showed that a large amount of the liquid volume inside the holes can be displaced within one acoustic cycle by the expansion of the cavitation bubbles. This confirmed that ultrasound is a very effective tool to intensify liquid exchange processes, and it might significantly improve micro mixing in small structures. The investigation of the effect of ultrasound power on the bubble density distribution revealed the possibility to control the cavitation bubble distribution inside the microholes. At a high ultrasound power (31.5 W) we observed the highest bubble density at the hole entrances, while reducing the ultrasound power by a factor of ten shifted the bubble locations to the inner end of the blind holes or to the middle of the through holes.

10.
Ultrason Sonochem ; 37: 542-560, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28427667

RESUMEN

A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35kHz and 130kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35kHz, whereas good cleaning results are obtained for 130kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained.

11.
Phys Rev Lett ; 118(6): 064301, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234516

RESUMEN

Multibubble sonoluminescence (MBSL) is the emission of light from imploding cavitation bubbles in dense ensembles or clouds. We demonstrate a technique of high-speed recording that allows imaging of bubble oscillations and motion together with emitted light flashes in a nonstationary multibubble environment. Hereby a definite experimental identification of light emitting individual bubbles, as well as details of their collapse dynamics can be obtained. For the extremely bright MBSL of acoustic cavitation in xenon saturated phosphoric acid, we are able to explore effects of bubble translation, deformation, and interaction on MBSL activity. The recordings with up to 0.5 million frames per second show that few and only the largest bubbles in the fields are flashing brightly, and that emission often occurs repetitively. Bubble collisions can lead to coalescence and the start or intensification of the emission, but also to its termination via instabilities and splitting. Bubbles that develop a liquid jet during collapse can flash intensely, but stronger jetting gradually reduces the emissions. Estimates of MBSL collapse temperature peaks are possible by numerical fits of transient bubble dynamics, in one case yielding 38 000 K.

12.
J Acoust Soc Am ; 142(6): 3649, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29289063

RESUMEN

The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

13.
Ultrason Sonochem ; 34: 474-483, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773271

RESUMEN

Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.

14.
Ultrason Sonochem ; 34: 663-676, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773293

RESUMEN

The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.

15.
Ultrason Sonochem ; 33: 170-181, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27245968

RESUMEN

Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425µm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated.

16.
Ultrason Sonochem ; 29: 550-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26187759

RESUMEN

The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ.

17.
Soft Matter ; 11(9): 1708-22, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25607820

RESUMEN

Technologies including (3D-) (bio-)printing, diesel engines, laser-induced forward transfer, and spray cleaning require optimization and therefore understanding of micrometer-sized droplets impacting at velocities beyond 10 m s(-1). However, as yet, this regime has hardly been addressed. Here we present the first time-resolved experimental investigation of microdroplet impact at velocities up to V0 = 50 m s(-1), on hydrophilic and -phobic surfaces at frame rates exceeding 10(7) frames per second. A novel method to determine the 3D-droplet profile at sub-micron resolution at the same frame rates is presented, using the fringe pattern observed from a bottom view. A numerical model, which is validated by the side- and bottom-view measurements, is employed to study the viscous boundary layer inside the droplet and the development of the rim. The spreading dynamics, the maximal spreading diameter, the boundary layer thickness, the rim formation, and the air bubble entrainment are compared to theory and previous experiments. In general, the impact dynamics are equal to millimeter-sized droplet impact for equal Reynolds-, Weber- and Stokes numbers (Re, We, and St, respectively). Using our numerical model, effective scaling laws for the progression of the boundary layer thickness and the rim diameter are provided. The dimensionless boundary layer thickness develops in time (t) according to δBL ~ D0/√Re(t/τ)0.45, and the diameter of the rim develops as DRim ~ D0/√We(t/τ)0.68, with drop diameter D0 and inertial time scale τ = D0/V0. These scalings differ from previously assumed, but never validated, values. Finally, no splash is observed, at variance with many predictions but in agreement with models including the influence of the surrounding gas. This confirms that the ambient gas properties are key ingredients for splash threshold predictions.

18.
ACS Appl Mater Interfaces ; 7(7): 4100-8, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25621714

RESUMEN

For the first time, we apply a high-speed imaging technique to record the activity of acoustically driven cavitation bubbles (86 kHz) on micropatterned surfaces with hydrophobic and hydrophilic stripes. The width of the hydrophobic stripes lies between 3.5 and 115 µm. This work provides the first direct visualization of the preferential location of bubbles on the hydrophobic areas of the patterns. The results confirm our previous prediction that surface cavitation strongly depends on the surface energy of the irradiated substrate. The observations show a remarkable effect of the stripe width on the size, movement, growth, splitting, and multiplying of the bubbles. The high-speed imaging also reveals that there is a minimal width of the hydrophobic stripes that allows bubble attraction and formation. Our observations are supported by a theoretical approach based on the forces acting on the bubbles.

19.
Ultrason Sonochem ; 25: 24-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25194210

RESUMEN

The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions.

20.
Ultrason Sonochem ; 22: 482-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24889548

RESUMEN

Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Znidarcic et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...