Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542714

RESUMEN

Obesity is a risk factor for many diseases, such as type 2 diabetes and cardiovascular diseases. In line with the need for precision medicine, the search for biomarkers reporting the progression of obesity- and diet-associated disorders is urgent. We used NMR to determine the metabolomics profile of key organs (lung, liver, heart, skeletal muscle, kidney, and brain) and serum from male C57Bl/6J mice (5 weeks old) fed for 6, 10, and 14 weeks on a high-fat and high-sucrose diet (HFHSD) vs. a standard diet (STD). We determined metabolite concentrations in the organs at each time point, which allowed us to discriminate age- and diet-related effects as well as the interactions between both, highlighting the need to evaluate the influence of age as a confounding factor on metabolic signatures. Notably, the analysis revealed the influence of time on metabolite concentrations in the STD condition, probably reflecting the juvenile-to-adult transition. Variations impacted the liver and lung metabolites, revealing the strong influence of the HFHS diet on normal metabolism maturation during youth.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sacarosa , Ratones , Masculino , Animales , Sacarosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Estudios Transversales , Obesidad/metabolismo , Metabolómica , Hígado/metabolismo , Ratones Endogámicos C57BL
2.
FASEB J ; 35(6): e21650, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33993539

RESUMEN

Mesenchymal stem cells from healthy adipose tissue are adipocytes progenitors with immunosuppressive potential that are used for years in cell therapy. Whether adipose stem cells (ASC) may prevent inflammation in early obesity is not known. To address this question, we performed a kinetic study of high-fat (HF) diet induced obesity in mice to follow the immune regulating functions of adipose stem cells (ASC) isolated from the subcutaneous (SAT) and the visceral adipose tissue (VAT). Our results show that, early in obesity and before inflammation was detected, HF diet durably and differently activated ASC from SAT and VAT. Subcutaneous ASC from HF-fed mice strongly inhibited the proliferation of activated T lymphocytes, whereas visceral ASC selectively inhibited TNFα expression by macrophages and simultaneously released higher concentrations of IL6. These depot specific differences may contribute to the low-grade inflammation that develops with obesity in VAT while inflammation in SAT is delayed. The mechanisms involved differ from those already described for naïve cells activation with inflammatory cytokines and probably engaged metabolic activation. These results evidence that adipose stem cells are metabolic sensors acquiring an obesity-primed immunocompetent state in answer to depot-specific intrinsic features with overnutrition, placing these cells ahead of inflammation in the local dialog with immune cells.


Asunto(s)
Tejido Adiposo/inmunología , Inflamación/inmunología , Grasa Intraabdominal/inmunología , Células Madre Mesenquimatosas/inmunología , Obesidad/fisiopatología , Grasa Subcutánea/inmunología , Linfocitos T/inmunología , Tejido Adiposo/patología , Animales , Inflamación/patología , Grasa Intraabdominal/patología , Activación de Linfocitos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Grasa Subcutánea/patología , Linfocitos T/patología
3.
Kidney Int ; 98(3): 663-672, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32739210

RESUMEN

Protein energy wasting is a common feature of patients with chronic kidney disease (CKD) and is associated with poor outcomes. Protein energy wasting and cachexia, a severe form of protein energy wasting, are characterized by increased resting energy expenditure but the underlying mechanisms are unclear. Browning corresponds to the activation of inducible brown adipocytes in white adipose tissue and occurs in states of cachexia associated with hypermetabolic disease such as cancer. Here we tested the hypothesis that CKD-associated protein energy wasting could result from browning activation as a direct effect of the uremic environment on adipocytes. In a murine model of CKD (5/6 nephrectomy), there was increased resting energy expenditure, expression of uncoupling protein 1 (a thermogenic protein uncoupling oxidative phosphorylation in mitochondria) and citrate synthase activity (a proxy of mitochondrial density in white adipose tissue). Mice with CKD also exhibited increased levels of atrial natriuretic peptide, a well known activator of browning. The incubation of primary adipose cells with plasma from patients receiving dialysis treatment and having signs of protein energy wasting led to an increased synthesis of uncoupling protein 1. Similarly, primary adipose cells exposed to atrial natriuretic peptide at concentrations relevant of CKD led to a significant increase of uncoupling protein 1 content. Thus, accumulation of cardiac natriuretic peptides during CKD could contribute to the browning of white adipose tissue and protein energy wasting.


Asunto(s)
Caquexia , Insuficiencia Renal Crónica , Tejido Adiposo Blanco/metabolismo , Animales , Caquexia/metabolismo , Metabolismo Energético , Humanos , Ratones , Péptidos Natriuréticos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Stem Cells Int ; 2019: 9323864, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31223312

RESUMEN

White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.

5.
PLoS One ; 9(3): e92039, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643087

RESUMEN

The protein of retroviral origin ENS-1/ERNI plays a major role during neural plate development in chick embryos by controlling the activity of the epigenetic regulator HP1γ, but its function in the earlier developmental stages is still unknown. ENS-1/ERNI promoter activity is down-regulated upon differentiation but the resulting protein expression has never been examined. In this study, we present the results obtained with custom-made antibodies to gain further insights into ENS-1 protein expression in Chicken embryonic stem cells (CES) and during their differentiation. First, we show that ENS-1 controls the activity of HP1γ in CES and we examined the context of its interaction with HP1γ. By combining immunofluorescence and western blot analysis we show that ENS-1 is localized in the cytoplasm and in the nucleus, in agreement with its role on gene's promoter activity. During differentiation, ENS-1 decreases in the cytoplasm but not in the nucleus. More precisely, three distinct forms of the ENS-1 protein co-exist in the nucleus and are differently regulated during differentiation, revealing a new level of control of the protein ENS-1. In silico analysis of the Ens-1 gene copies and the sequence of their corresponding proteins indicate that this pattern is compatible with at least three potential regulation mechanisms, each accounting only partially. The results obtained with the anti-ENS-1 antibodies presented here reveal that the regulation of ENS-1 expression in CES is more complex than expected, providing new tracks to explore the integration of ENS-1 in CES cells regulatory networks.


Asunto(s)
Proteínas Aviares/genética , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales de Origen Murino/biosíntesis , Anticuerpos Monoclonales de Origen Murino/química , Proteínas Aviares/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Embrión de Pollo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestructura , Desarrollo Embrionario , Células Madre Embrionarias/ultraestructura , Epigénesis Genética , Proteínas Fetales/metabolismo , Redes Reguladoras de Genes , Ratones , Datos de Secuencia Molecular , Placa Neural/embriología , Placa Neural/metabolismo , Placa Neural/ultraestructura , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
Retrovirology ; 9: 21, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22420414

RESUMEN

BACKGROUND: Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized in vitro and in vivo the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells. RESULTS: We show that Ens-1 LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the Ens-1 gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of Ens-1. CONCLUSION: Our results show that Ens-1 LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, Ens-1 LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.


Asunto(s)
ADN Viral/genética , Células Madre Embrionarias/virología , Retrovirus Endógenos/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Embrión de Pollo , Unión Proteica , Secuencias Repetidas Terminales
7.
PLoS One ; 5(11): e15507, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21085495

RESUMEN

The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Células Madre Embrionarias/metabolismo , Animales , Western Blotting , Ciclo Celular/genética , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
PLoS Biol ; 6(1): e2, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18184035

RESUMEN

In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT), the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas HMGB/biosíntesis , Placa Neural/metabolismo , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas Aviares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrión de Pollo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/embriología , Unión Proteica , Factores de Transcripción SOXB1 , Factores de Transcripción/genética
9.
J Mol Evol ; 65(3): 215-27, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17671751

RESUMEN

Embryonic stem (ES) cells are important developmental cells that appear very early during development and subsequently give rise to all the cell lineages of the future adult organism. In these cells a limited subset of transcription factors is expressed that are well conserved among species and essential for the fate of the stem cell. The transcriptome analysis of ES cells from chicken has revealed a gene family, cENS, that is specifically expressed in ES cells and in early embryos and is repressed during the differentiation process. This family is characterized by displaying retroviral structures and shares no homology with other species' genes. These characteristics are probably not restricted to the chicken genome and raise the question of whether similar genes are present and have been maintained in other species. We have examined the different copies of this gene in the sequenced chicken genome to investigate its dynamics and its evolution. We have distinguished two groups of cENS-related copies. The first group, resulting from recent transposition events, contains the transcribed ENS-1 and ENS-3 plus copies subjected to negative selection pressures. The second group contains degenerate copies that were integrated into the genome earlier. Comparison with copies previously isolated from three Galliformes showed that they are also subjected to selection pressures. We also detected numerous solo-LTRs containing the ENS-1 promoter that may control the expression of host genes. Taken together, these findings suggest a function sustained by a neogene of retroviral origin during the early stages of chicken development.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Inestabilidad Genómica , Retroelementos/genética , Animales , Embrión de Pollo , Galliformes/genética , Dosificación de Gen , Genoma , Familia de Multigenes , Filogenia
10.
Nucleic Acids Res ; 32(7): 2259-71, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15107494

RESUMEN

cENS-1/cERNI genes have been shown to be expressed very early during chicken embryonic development and as well as in pluripotent chicken embryonic stem (CES) cells. We have previously identified a promoter region, which is specifically active in CES cells compared to differentiated cells. In order to understand the molecular mechanisms which regulate the cENS-1/cERNI promoter, we analyzed the cis-acting elements of this promoter in CES and differentiated cells. We identified a short sequence, named the B region, 5'-CAAG TCCAGG CAAG-3', that exhibits a strong enhancer activity in CES and differentiated cells. Mutation of the B region in the whole cENS-1 promoter strongly decreases the promoter activity in CES cells, suggesting that this region is essential for activating the promoter. The B region is similar to the previously described response element for the transcription factor CP2 and we show by supershift experiments that a protein complex containing CP2 is bound to this B response element. All these results identify a nuclear factor belonging to the CP2 transcription factor family that is crucial for the activation of the cENS-1/cERNI promoter. The pattern of expression of cCP2 in early chicken embryo before gastrulation is very similar to that of cENS-1/cERNI which strongly suggests that cCP2 also plays an essential role in gene expression early in embryonic development.


Asunto(s)
Embrión de Pollo , Pollos/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Aviares/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Metilación de ADN , Proteínas Fetales/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Elementos de Respuesta/genética
11.
Oncogene ; 21(18): 2864-72, 2002 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-11973646

RESUMEN

T2EC are chicken erythrocytic progenitors that balance between self-renewal and differentiation as a function of response to specific growth factors. Their transformation by the v-erbA oncogene locks them into the self-renewal program. We show here that the expression of the VLA-2 integrin alpha2 subunit mRNA is downregulated by v-erbA and that VLA-2 engagement and clustering, brought about by treatment with an alpha2-specific antibody or by culture on the VLA-2 ligand collagen I, inhibits T2EC proliferation. From competition studies using antibodies, VLA-2 was shown to be involved in the collagen-induced response. While engagement of VLA-2 inhibited proliferation, it was not sufficient to induce differentiation. The transformation of T2EC by v-erbA decreased their interaction with collagen I and the VLA-2 brake on cell proliferation, which may account for the increased proliferation potential of transformed erythrocytic progenitors and for their shedding into the blood of infected chickens. Our data suggest that the interaction between erythroid progenitors and collagen, mediated by VLA-2, play a major role in the control of erythropoiesis in vitro and that this pathway is a target of the v-erbA oncogene.


Asunto(s)
Regulación hacia Abajo , Integrinas/genética , Proteínas Oncogénicas v-erbA/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Cationes Bivalentes , Adhesión Celular/fisiología , División Celular , Línea Celular , Pollos , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Eritrocitos/citología , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Células Madre Hematopoyéticas/citología , Integrinas/biosíntesis , Proteínas Oncogénicas v-erbA/genética , Receptores de Colágeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA