Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(9): 181, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967829

RESUMEN

PD-1 blockade therapy has revolutionized melanoma treatment, but still not all patients benefit and pre-treatment identification of those patients is difficult. Increased expression of inflammatory markers such as interleukin (IL)-6 in blood of patients correlates with poor treatment response. We set out to study the effect of inflammatory cytokines on PD-1 blockade in vitro. For this, we studied the effect of IL-6 and type I interferon (IFN) in vitro on human T cells in a mixed leukocyte reaction (MLR) in the absence or presence of PD-1 blockade. While IL-6 reduced IFN-γ secretion by T cells in both the presence and absence of PD-1 blockade, IFN-α specifically reduced the IFN-γ secretion only in the presence of PD-1 blockade. IFN-α reduced T cell proliferation independent of PD-1 blockade and reduced the percentage of cells producing IFN-γ only in the presence of PD-1 blockade. Next we determined the type I IFN score in a cohort of 22 melanoma patients treated with nivolumab. In this cohort, we did not find a correlation between clinical response and type I IFN score, nor between clinical response and IFN-γ secretion in vitro in a MLR in the presence of PD-1 blockade. We conclude that IFN-α reduces the effectiveness of PD-1 blockade in vitro, but that in this cohort, type I IFN score in vivo, nor IFN-γ secretion in vitro in a MLR in the presence of PD-1 blockade correlated to decreased therapy responses in patients.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Interferón-alfa , Melanoma , Nivolumab , Receptor de Muerte Celular Programada 1 , Linfocitos T , Humanos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Interferón-alfa/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Femenino , Masculino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Persona de Mediana Edad , Nivolumab/uso terapéutico , Nivolumab/farmacología , Anciano , Adulto , Proliferación Celular/efectos de los fármacos
2.
J Autoimmun ; 146: 103219, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696927

RESUMEN

Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.


Asunto(s)
Colágeno , Modelos Animales de Enfermedad , Fibroblastos , Fibrosis , Ratones Noqueados , Receptores Inmunológicos , Esclerodermia Sistémica , Animales , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Ratones , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Bleomicina/efectos adversos , Piel/patología , Piel/metabolismo , Piel/inmunología , Transducción de Señal , Masculino , Femenino , Células Cultivadas
3.
J Transl Med ; 22(1): 382, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659022

RESUMEN

Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.


Asunto(s)
Colágeno , Matriz Extracelular , Inmunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Colágeno/metabolismo , Inmunoterapia/métodos , Matriz Extracelular/metabolismo , Animales , Procesamiento Proteico-Postraduccional
4.
Sci Adv ; 10(11): eadk6906, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478620

RESUMEN

Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.


Asunto(s)
Matriz Extracelular , Macrófagos , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Citoesqueleto , Integrinas/metabolismo , Transducción de Señal
5.
Cancer Immunol Immunother ; 73(1): 16, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236251

RESUMEN

Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding. Multiple studies in mice implicate blockade of LAIR-1:collagen interaction in cancer as a promising therapeutic strategy. Here, we investigated the role of LAIR-1 in anti-tumour responses. We show that although LAIR-1 inhibits activation, proliferation, and cytokine production of mouse T cells in vitro, tumour outgrowth in LAIR-1-deficient mice did not differ from wild type mice in several in vivo tumour models. Furthermore, treatment with NC410, a LAIR-2-Fc fusion protein, did not result in increased tumour clearance in tested immunocompetent mice, which contrasts with previous data in humanized mouse models. This discrepancy may be explained by our finding that NC410 blocks human LAIR-1:collagen interaction more effectively than mouse LAIR-1:collagen interaction. Despite the lack of therapeutic impact of NC410 monotherapy, mice treated with a combination of NC410 and anti-programmed death-ligand 1 did show reduced tumour burden and increased survival. Using LAIR-1-deficient mice, we showed that this effect seemed to be dependent on the presence of LAIR-1. Taken together, our data demonstrate that the absence of LAIR-1 signalling alone is not sufficient to control tumour growth in multiple immunocompetent mouse models. However, combined targeting of LAIR-1 and PD-L1 results in increased tumour control. Thus, additional targeting of the LAIR-1:collagen pathway with NC410 is a promising approach to treating tumours where conventional immunotherapy is ineffective.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Humanos , Ratones , Colágeno , Modelos Animales de Enfermedad , Leucocitos , Ligandos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
6.
PLoS One ; 18(4): e0284404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053248

RESUMEN

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human myeloid cells. We previously showed that dendritic cell (DC)-driven Th17 cell differentiation of human naive CD4+ T cells requires presence of neutrophils, which is inhibited by SIRL-1 ligation. VSTM1-v2 is a soluble isoform of SIRL-1, which was previously proposed to function as a Th17 polarizing cytokine. Here, we investigated the effect of VSTM1-v2 on DC-driven Th17 cell development. Neutrophils induced DC-driven Th17 cell differentiation, which was not enhanced by VSTM1-v2. Similarly, we found no effect of VSTM1-v2 on cytokine-driven Th17 cell development. Thus, our results do not support a role for VSTM1-v2 in Th17 cell differentiation.


Asunto(s)
Citocinas , Células Th17 , Humanos , Diferenciación Celular , Células Dendríticas , Neutrófilos , Isoformas de Proteínas
7.
Eur J Immunol ; 53(5): e2250306, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965113

RESUMEN

Similar to immune cells, non-hematopoietic cells recognize microbial and endogenous threats. Their response to these stimuli is dependent on the environmental context. For example, intact intestinal epithelium expresses pattern recognition receptors (PRRs) but should tolerate commensal bacteria, while damaged epithelium should respond promptly to initiate an immune response. This indicates that non-hematopoietic cells possess mechanisms to sense environmental context and regulate their responses. Inhibitory receptors provide context sensing to immune cells. For instance, they raise the threshold for activation to prevent overzealous immune activation to harmless stimuli. Inhibitory receptors are typically studied on hematopoietic cells, but several of these receptors are expressed on non-hematopoietic cells. Here, we review evidence for the regulation of non-hematopoietic cells by inhibitory receptors, focusing on epithelial and endothelial cells. We explain that inhibitory receptors on these cells can sense a wide range of signals, including cell-cell adhesion, cell-matrix adhesion, and apoptotic cells. More importantly, they regulate various functions on these cells, including immune activation, proliferation, and migration. In conclusion, we propose that inhibitory receptors provide context to non-hematopoietic cells by fine tuning their response to endogenous or microbial stimuli. These findings prompt to investigate the functions of inhibitory receptors on non-hematopoietic cells more systematically.


Asunto(s)
Células Endoteliales , Receptores de Reconocimiento de Patrones , Mucosa Intestinal , Epitelio , Adhesión Celular
8.
J Immunol ; 210(4): 389-397, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36637221

RESUMEN

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo.


Asunto(s)
Bronquiolitis , COVID-19 , Infecciones por Virus Sincitial Respiratorio , Humanos , Lactante , Bronquiolitis/metabolismo , COVID-19/metabolismo , Mieloblastina , Neutrófilos , Receptores Inmunológicos , Staphylococcus aureus , Leucocitos/metabolismo
9.
Immun Inflamm Dis ; 10(12): e739, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36444625

RESUMEN

INTRODUCTION: Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation elicits immune pathology. Currently, no effective treatment exists to curb neutrophil activation. However, neutrophils express a variety of inhibitory receptors which may represent potential therapeutic targets to limit neutrophilic inflammation. Indeed, we previously showed that the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) regulates neutrophilic airway inflammation and inhibits neutrophil extracellular trap formation. The inhibitory receptor Allergin-1 is expressed by myeloid cells and B cells. Allergin-1 suppresses mast cell and basophil activation, but a potential regulatory role on neutrophils remains unexplored. We aimed to demonstrate the regulation of neutrophils by Allergin-1. METHODS: We examine Allergin-1 isoform expression on human neutrophils during homeostatic (healthy donors) and chronic inflammatory (systemic lupus erythematosus patients) conditions in comparison to other circulating leukocytes by flow cytometry. To reveal a potential role for Allergin-1 in regulating neutrophilic inflammation, we experimentally infect wild-type (WT) and Allergin-1-deficient mice with a respiratory syncytial virus (RSV) and monitor disease severity and examine cellular airway infiltrate. Flow cytometry was used to confirm Allergin-1 expression by airway-infiltrated neutrophils in RSV infection-induced bronchiolitis patients. RESULTS: Only the short 1 (S1) isoform, but not the long (L) or S2 isoform could be detected on blood leukocytes, with the exception of nonclassical monocytes, which exclusively express the S2 isoform. Allergin-1 expression levels did not vary significantly between healthy individuals and patients with the systemic inflammatory disease on any interrogated cell type. Airway-infiltrated neutrophils of pediatric RSV bronchiolitis patients were found to express Allergin-1S1. However, Allergin-1-deficient mice experimentally infected with RSV did not show exacerbated disease or increased neutrophil airway infiltration compared to WT littermates. CONCLUSION: Allergin-1 isoform expression is unaffected by chronic inflammatory conditions. In stark contrast to fellow inhibitory receptor LAIR-1, Allergin-1 does not regulate neutrophilic inflammation in a mouse model of RSV bronchiolitis.


Asunto(s)
Bronquiolitis , Inflamación , Receptores Inmunológicos , Infecciones por Virus Sincitial Respiratorio , Animales , Niño , Humanos , Ratones , Inflamación/genética , Inflamación/metabolismo , Neutrófilos , Isoformas de Proteínas/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios
10.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35429403

RESUMEN

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Citocinas , Humanos , Leucocitos Mononucleares/metabolismo , Receptores de Lipopolisacáridos/deficiencia , Virus Sincitial Respiratorio Humano
11.
J Leukoc Biol ; 111(2): 367-377, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33884657

RESUMEN

Inhibitory and activating immune receptors play a key role in modulating the amplitude and duration of immune responses during infection and in maintaining immune balance in homeostatic conditions. The CD200 Receptor (CD200R) gene family in humans encodes one inhibitory receptor, CD200R1, and one putative activating member, CD200R1 Like (CD200R1L). It is demonstrated that CD200R1L is endogenously expressed by human neutrophils and activates cellular functions such as reactive oxygen species (ROS) production via Syk, PI3Kß, PI3Kδ, and Rac GTPase signaling. Phylogenetic analysis shows that CD200R1L is present in many species among vertebrates, ranging from birds to primates, suggesting that evolutionary conservation of this receptor is critical for protection against co-evolving pathogens. The duplication event that generated CD200R1L from CD200R occurred several times throughout evolution, supporting convergent evolution of CD200R1L. In our phylogenetic trees, CD200R1L has longer branch lengths than CD200R1 in most species, suggesting that CD200R1L is evolving faster than CD200R1. It is proposed that CD200R1L represents a hitherto uncharacterized activating receptor on human neutrophils.


Asunto(s)
Evolución Molecular , Neutrófilos/metabolismo , Receptores de Orexina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quinasa Syk/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Anticuerpos Monoclonales/inmunología , Humanos , Interleucina-8/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Receptores de Orexina/genética , Fosfatidilinositol 3-Quinasas/genética , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk/genética , Proteínas de Unión al GTP rac/genética
12.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905019

RESUMEN

Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals.


Asunto(s)
Receptores de Reconocimiento de Patrones/fisiología , Animales , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Homeostasis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Tolerancia Inmunológica , Inmunidad , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Especificidad de Órganos , Transducción de Señal
13.
Neuron ; 110(4): 613-626.e9, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34921782

RESUMEN

The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.


Asunto(s)
Macrófagos , Células Receptoras Sensoriales , Animales , Ganglios Espinales/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Mitocondrias , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo
14.
Front Immunol ; 12: 733561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691040

RESUMEN

The tumor microenvironment (TME) is a complex structure comprised of tumor, immune and stromal cells, vasculature, and extracellular matrix (ECM). During tumor development, ECM homeostasis is dysregulated. Collagen remodeling by matrix metalloproteinases (MMPs) generates specific collagen fragments, that can be detected in the circulation of cancer patients and correlate with poor disease outcome. Leukocyte-Associated Immunoglobulin-like Receptor-1 (LAIR-1) is an inhibitory collagen receptor expressed on immune cells in the TME and in the circulation. We hypothesized that in addition to ECM collagen, collagen fragments produced in cancer can mediate T cell immunosuppression through LAIR-1. Our analyses of TCGA datasets show that cancer patients with high tumor mRNA expression of MMPs, collagen I and LAIR-1 have worse overall survival. We show that in vitro generated MMP1 or MMP9 collagen I fragments bind to and trigger LAIR-1. Importantly, LAIR-1 triggering by collagen I fragments inhibits CD3 signaling and IFN-γ secretion in a T cell line. LAIR-2 is a soluble homologue of LAIR-1 with higher affinity for collagen and thereby acts as a decoy receptor. Fc fusion proteins of LAIR-2 have potential as cancer immunotherapeutic agents and are currently being tested in clinical trials. We demonstrate that collagen fragment-induced inhibition of T cell function could be reversed by LAIR-2 fusion proteins. Overall, we show that collagen fragments produced in cancer can mediate T cell suppression through LAIR-1, potentially contributing to systemic immune suppression. Blocking the interaction of LAIR-1 with collagen fragments could be an added benefit of LAIR-1-directed immunotherapy.


Asunto(s)
Colágeno Tipo I/metabolismo , Inmunoterapia/métodos , Neoplasias/inmunología , Receptores Inmunológicos/metabolismo , Linfocitos T/inmunología , Línea Celular , Colágeno Tipo I/genética , Matriz Extracelular/metabolismo , Humanos , Tolerancia Inmunológica , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias/terapia , Fragmentos de Péptidos/genética , Unión Proteica , Receptores Inmunológicos/genética , Proteínas Recombinantes de Fusión/genética , Transducción de Señal , Microambiente Tumoral
15.
Sci Signal ; 14(704): eabb4324, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34637328

RESUMEN

CD200 receptor 1 (CD200R) is an inhibitory immunoreceptor that suppresses Toll-like receptor (TLR)­induced cytokine production through the adaptor protein Dok2 and the GTPase activating protein (GAP) p120-RasGAP, which can be cleaved during mild cellular stress. We found that in the presence of cleaved p120-RasGAP, CD200R lost its capacity to inhibit phosphorylation of ribosomal S6 protein (rpS6), suggesting the reduced activity of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, treatment of human peripheral blood mononuclear cells (PBMC) with interferon-α (IFN-α) resulted in increased amounts of cleaved p120-RasGAP. Upon pretreatment of cells with increasing concentrations of IFN-α, CD200R switched from inhibiting to potentiating the TLR7- and TLR8-induced expression of the gene encoding IFN-γ, a cytokine that is important for innate and adaptive immunity and is implicated in systemic lupus erythematosus (SLE) pathogenesis. PBMC from patients with SLE, a prototypic type I IFN disease, had an increased abundance of cleaved p120-RasGAP compared to that in cells from healthy controls. In a subset of SLE patients, CD200R stopped functioning as an inhibitory receptor or potentiated TLR-induced IFNG mRNA expression. Thus, our data suggest that type I IFN rewires CD200R signaling to be proinflammatory, which could contribute to the perpetuation of inflammation in patients with SLE.


Asunto(s)
Interferón Tipo I , Leucocitos Mononucleares , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Interferón Tipo I/genética , Interferón-alfa , Leucocitos Mononucleares/metabolismo , Transducción de Señal
16.
FASEB J ; 35(10): e21875, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34533845

RESUMEN

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is a negative regulator of myeloid cell function and dampens antimicrobial responses. We here show that different species of the genus Staphylococcus secrete SIRL-1-engaging factors. By screening a library of single-gene transposon mutants in Staphylococcus aureus, we identified these factors as phenol-soluble modulins (PSMs). PSMs are amphipathic α-helical peptides involved in multiple aspects of staphylococcal virulence and physiology. They are cytotoxic and activate the chemotactic formyl peptide receptor 2 (FPR2) on immune cells. Human cathelicidin LL-37 is also an amphipathic α-helical peptide with antimicrobial and chemotactic activities, structurally and functionally similar to α-type PSMs. We demonstrate that α-type PSMs from multiple staphylococcal species as well as human cathelicidin LL-37 activate SIRL-1, suggesting that SIRL-1 recognizes α-helical peptides with an amphipathic arrangement of hydrophobicity, although we were not able to show direct binding to SIRL-1. Upon rational peptide design, we identified artificial peptides in which the capacity to ligate SIRL-1 is segregated from cytotoxic and FPR2-activating properties, allowing specific engagement of SIRL-1. In conclusion, we propose staphylococcal PSMs and human LL-37 as a potential new class of natural ligands for SIRL-1.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Toxinas Bacterianas/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Sirtuina 1/metabolismo , Staphylococcus aureus/metabolismo , Humanos , Percepción de Quorum , Catelicidinas
17.
Eur J Immunol ; 51(9): 2210-2217, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145909

RESUMEN

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL-1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL-1 ligands. S100 proteins are composed of two calcium-binding domains. Various S100 proteins are damage-associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL-1 recognizes individual calcium-binding domains of all tested S100 proteins. Blocking SIRL-1 on human neutrophils enhanced S100 protein S100A6-induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL-1. Taken together, SIRL-1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.


Asunto(s)
Activación Neutrófila/inmunología , Neutrófilos/inmunología , Receptores Inmunológicos/inmunología , Proteínas S100/inmunología , Alarminas/inmunología , Humanos , Inflamación/inmunología , Monocitos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Transducción de Señal/inmunología
18.
Elife ; 102021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34121658

RESUMEN

Collagens are a primary component of the extracellular matrix and are functional ligands for the inhibitory immune receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1. LAIR-2 is a secreted protein that can act as a decoy receptor by binding collagen with higher affinity than LAIR-1. We propose that collagens promote immune evasion by interacting with LAIR-1 expressed on immune cells, and that LAIR-2 releases LAIR-1-mediated immune suppression. Analysis of public human datasets shows that collagens, LAIR-1 and LAIR-2 have unique and overlapping associations with survival in certain tumors. We designed a dimeric LAIR-2 with a functional IgG1 Fc tail, NC410, and showed that NC410 increases human T cell expansion and effector function in vivo in a mouse xenogeneic-graft versus-host disease model. In humanized mouse tumor models, NC410 reduces tumor growth that is dependent on T cells. Immunohistochemical analysis of human tumors shows that NC410 binds to collagen-rich areas where LAIR-1+ immune cells are localized. Our findings show that NC410 might be a novel strategy for cancer immunotherapy for immune-excluded tumors.


Asunto(s)
Colágeno/metabolismo , Fragmentos Fc de Inmunoglobulinas , Inmunoterapia/métodos , Receptores Inmunológicos , Proteínas Recombinantes de Fusión , Animales , Antineoplásicos Inmunológicos , Línea Celular Tumoral , Biología Computacional , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Ratones , Neoplasias/terapia , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
PLoS One ; 16(3): e0244770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780466

RESUMEN

The inhibitory signaling of CD200 receptor 1 (CD200R) has been attributed to its NPxY signaling motif. However, NPxY-motifs are present in multiple protein families and are mostly known to mediate protein trafficking between subcellular locations rather than signaling. Therefore, we investigated whether additional motifs specify the inhibitory function of CD200R. We performed phylogenetic analysis of the intracellular domain of CD200R in mammals, birds, bony fish, amphibians and reptiles. Indeed, the tyrosine of the NPxY-motif is fully conserved across species, in line with its central role in CD200R signaling. In contrast, P295 of the NPxY-motif is not conserved. Instead, a conserved stretch of negatively charged amino acids, EEDE279, and two conserved residues P285 and K292 in the flanking region prior to the NPxY-motif are required for CD200R mediated inhibition of p-Erk, p-Akt308, p-Akt473, p-rpS6 and LPS-induced IL-8 secretion. Altogether, we show that instead of the more common NPxY-motif, CD200R signaling can be assigned to a unique signaling motif in mammals defined by: EEDExxPYxxYxxKxNxxY.


Asunto(s)
Receptores de Orexina/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mutagénesis Sitio-Dirigida , Receptores de Orexina/química , Receptores de Orexina/clasificación , Receptores de Orexina/genética , Fosforilación , Filogenia , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina/metabolismo
20.
Clin Immunol ; 220: 108593, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32920212

RESUMEN

BACKGROUND: Neutrophils are the most abundant cell type infiltrating the airways during severe respiratory syncytial virus (RSV) infection. Their exact role in disease pathophysiology remains enigmatic. Therefore, we determined genome-wide RNA expression profiles of local and systemic neutrophils in RSV bronchiolitis to provide further insight into local neutrophil biology. METHODS: We performed a single-center analysis, in 16 infants, admitted to the pediatric intensive care unit with severe RSV bronchiolitis. Neutrophils were isolated from blood and tracheobronchial aspirates (sputum). After low input RNA sequencing, differential expression of genes was determined followed by gene set analysis. RESULTS: Paired transcriptomic analysis of airway versus blood neutrophils showed an inflammatory phenotype, characterized by NF-kB signaling and upregulated expression of IL-6 and interferon pathways. We observed distinct expression of neutrophil activation genes (TNFSF13B, FCER1G). DISCUSSION: Our data indicate that airway neutrophils regulate their function at the transcriptional level in response to viral infection. It also suggests that local interferon drives the neutrophil response of severe RSV bronchiolitis.


Asunto(s)
Bronquiolitis/genética , Bronquiolitis/inmunología , Neutrófilos/inmunología , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Transcriptoma , Factor Activador de Células B/genética , Bronquiolitis/sangre , Femenino , Humanos , Lactante , Interferones/inmunología , Pulmón/citología , Pulmón/inmunología , Masculino , FN-kappa B/inmunología , ARN , Receptores Fc/genética , Infecciones por Virus Sincitial Respiratorio/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...