Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113359, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917585

RESUMEN

Oxidative stress causes K63-linked ubiquitination of ribosomes by the E2 ubiquitin conjugase Rad6. How Rad6-mediated ubiquitination of ribosomes affects translation, however, is unclear. We therefore perform Ribo-seq and Disome-seq in Saccharomyces cerevisiae and show that oxidative stress causes ribosome pausing at specific amino acid motifs, which also leads to ribosome collisions. However, these redox-pausing signatures are lost in the absence of Rad6 and do not depend on the ribosome-associated quality control (RQC) pathway. We also show that Rad6 is needed to inhibit overall translation in response to oxidative stress and that its deletion leads to increased expression of antioxidant genes. Finally, we observe that the lack of Rad6 leads to changes during translation that affect activation of the integrated stress response (ISR) pathway. Our results provide a high-resolution picture of the gene expression changes during oxidative stress and unravel an additional stress response pathway affecting translation elongation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , gamma-Glutamil Hidrolasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribosomas/metabolismo , Estrés Oxidativo
2.
RNA ; 29(11): 1623-1643, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582617

RESUMEN

It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Mol Cell ; 83(15): 2726-2738.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506697

RESUMEN

Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that mRNA location and translation rate can also determine protein targeting by modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein by promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting by promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a "partner-selection" mechanism that robustly influences protein distribution and function.


Asunto(s)
Núcleo Celular , Proteínas Oncogénicas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Oncogénicas/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Transporte de Proteínas , Biosíntesis de Proteínas , Proteínas de la Membrana/metabolismo
4.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37163129

RESUMEN

Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that protein targeting can additionally be determined by mRNA location and translation rate, through modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein, through promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting, through promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a 'partner-selection' mechanism that robustly influences protein distribution and function.

6.
Nat Commun ; 12(1): 2976, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016977

RESUMEN

The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Trastorno del Espectro Autista/genética , Codón Iniciador , Codón de Terminación , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Técnicas de Inactivación de Genes , Glutarredoxinas/genética , Humanos , Mutación , Sistemas de Lectura Abierta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
7.
Nat Commun ; 12(1): 2803, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990576

RESUMEN

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Asunto(s)
Antibacterianos/farmacología , Macrólidos/farmacología , Ribosomas/efectos de los fármacos , Antibacterianos/química , Sitios de Unión , Microscopía por Crioelectrón , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Humanos , Macrólidos/química , Modelos Moleculares , Mutación , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Hongos/genética , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Relación Estructura-Actividad
8.
Methods Mol Biol ; 2252: 27-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765270

RESUMEN

The knowledge of translation start sites is crucial for annotation of genes in bacterial genomes. However, systematic mapping of start codons in bacterial genes has mainly relied on predictions based on protein conservation and mRNA sequence features which, although useful, are not always accurate. We recently found that the pleuromutilin antibiotic retapamulin (RET) is a specific inhibitor of translation initiation that traps ribosomes specifically at start codons, and we used it in combination with ribosome profiling to map start codons in the Escherichia coli genome. This genome-wide strategy, that was named Ribo-RET, not only verifies the position of start codons in already annotated genes but also enables identification of previously unannotated open reading frames and reveals the presence of internal start sites within genes. Here, we provide a detailed Ribo-RET protocol for E. coli. Ribo-RET can be adapted for mapping the start codons of the protein-coding sequences in a variety of bacterial species.


Asunto(s)
Codón Iniciador , Biología Computacional/métodos , Escherichia coli/genética , Ribosomas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Codón Iniciador/efectos de los fármacos , Diterpenos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Genoma Bacteriano , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/efectos de los fármacos
9.
Curr Genet ; 67(1): 19-26, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33044589

RESUMEN

Translating ribosomes slow down or completely stall when they encounter obstacles on mRNAs. Such events can lead to ribosomes colliding with each other and forming complexes of two (disome), three (trisome) or more ribosomes. While these events can activate surveillance pathways, it has been unclear if collisions are common on endogenous mRNAs and whether they are usually detected by these cellular pathways. Recent genome-wide surveys of collisions revealed widespread distribution of disomes and trisomes across endogenous mRNAs in eukaryotic cells. Several studies further hinted that the recognition of collisions and response to them by multiple surveillance pathways depend on the context and duration of the ribosome stalling. This review considers recent efforts in the identification of endogenous ribosome collisions and cellular pathways dedicated to sense their severity. We further discuss the potential role of collided ribosomes in modulating co-translational events and contributing to cellular homeostasis.


Asunto(s)
Biosíntesis de Proteínas/genética , Ribosomas/genética , Ubiquitinación/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
10.
Mol Cell ; 79(4): 588-602.e6, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32615089

RESUMEN

The ribosome-associated protein quality control (RQC) system that resolves stalled translation events is activated when ribosomes collide and form disome, trisome, or higher-order complexes. However, it is unclear whether this system distinguishes collision complexes formed on defective mRNAs from those with functional roles on endogenous transcripts. Here, we performed disome and trisome footprint profiling in yeast and found collisions were enriched on diverse sequence motifs known to slow translation. When 60S recycling was inhibited, disomes accumulated at stop codons and could move into the 3' UTR to reinitiate translation. The ubiquitin ligase and RQC factor Hel2/ZNF598 generally recognized collisions but did not induce degradation of endogenous transcripts. However, loss of Hel2 triggered the integrated stress response, via phosphorylation of eIF2α, thus linking these pathways. Our results suggest that Hel2 has a role in sensing ribosome collisions on endogenous mRNAs, and such events may be important for cellular homeostasis.


Asunto(s)
Huella de ADN/métodos , Genoma Fúngico , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regiones no Traducidas 3' , Anisomicina/farmacología , Codón de Terminación , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mutación , Fosforilación , Estabilidad del ARN , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
11.
Mol Cell ; 74(3): 481-493.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30904393

RESUMEN

The use of alternative translation initiation sites enables production of more than one protein from a single gene, thereby expanding the cellular proteome. Although several such examples have been serendipitously found in bacteria, genome-wide mapping of alternative translation start sites has been unattainable. We found that the antibiotic retapamulin specifically arrests initiating ribosomes at start codons of the genes. Retapamulin-enhanced Ribo-seq analysis (Ribo-RET) not only allowed mapping of conventional initiation sites at the beginning of the genes, but strikingly, it also revealed putative internal start sites in a number of Escherichia coli genes. Experiments demonstrated that the internal start codons can be recognized by the ribosomes and direct translation initiation in vitro and in vivo. Proteins, whose synthesis is initiated at internal in-frame and out-of-frame start sites, can be functionally important and contribute to the "alternative" bacterial proteome. The internal start sites may also play regulatory roles in gene expression.


Asunto(s)
Genoma Bacteriano/genética , Iniciación de la Cadena Peptídica Traduccional , Proteoma/genética , Proteómica , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Codón Iniciador/genética , Diterpenos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , ARN Mensajero/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética
12.
Microbiol Spectr ; 6(4)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30003865

RESUMEN

Genetic coding in bacteria largely operates via the "one gene-one protein" paradigm. However, the peculiarities of the mRNA structure, the versatility of the genetic code, and the dynamic nature of translation sometimes allow organisms to deviate from the standard rules of protein encoding. Bacteria can use several unorthodox modes of translation to express more than one protein from a single mRNA cistron. One such alternative path is the use of additional translation initiation sites within the gene. Proteins whose translation is initiated at different start sites within the same reading frame will differ in their N termini but will have identical C-terminal segments. On the other hand, alternative initiation of translation in a register different from the frame dictated by the primary start codon will yield a protein whose sequence is entirely different from the one encoded in the main frame. The use of internal mRNA codons as translation start sites is controlled by the nucleotide sequence and the mRNA folding. The proteins of the alternative proteome generated via the "genes-within-genes" strategy may carry important functions. In this review, we summarize the currently known examples of bacterial genes encoding more than one protein due to the utilization of additional translation start sites and discuss the known or proposed functions of the alternative polypeptides in relation to the main protein product of the gene. We also discuss recent proteome- and genome-wide approaches that will allow the discovery of novel translation initiation sites in a systematic fashion.


Asunto(s)
Bacterias/genética , Codón Iniciador , Genoma Bacteriano/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Genes Sobrepuestos , Código Genético , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional
13.
Mol Cell ; 65(2): 207-219, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107647

RESUMEN

Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Proteínas de Transporte de Catión/biosíntesis , Cobre/metabolismo , Escherichia coli/enzimología , Sistema de Lectura Ribosómico , Chaperonas Moleculares/biosíntesis , Ribosomas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , ATPasas Transportadoras de Cobre , Escherichia coli/genética , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genotipo , Células HEK293 , Homeostasis , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Conformación de Ácido Nucleico , Terminación de la Cadena Péptídica Traduccional , Fenotipo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección
14.
Mol Cell ; 56(3): 446-452, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25306253

RESUMEN

During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site, leading to inhibition of peptide bond formation and translation arrest.


Asunto(s)
Eritromicina/química , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Proteínas Bacterianas/química , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Fragmentos de Péptidos/química , Unión Proteica , Señales de Clasificación de Proteína , Estructura Cuaternaria de Proteína , Ribosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...