Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 11288, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27088892

RESUMEN

The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function.


Asunto(s)
Embrión no Mamífero/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Adhesión Celular/genética , Movimiento Celular/genética , Sistema Digestivo/citología , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Perfilación de la Expresión Génica/métodos , Gónadas/citología , Gónadas/embriología , Gónadas/metabolismo , Metaloproteínas/clasificación , Metaloproteínas/genética , Metaloproteínas/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Pez Cebra/embriología , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Elife ; 42015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25875301

RESUMEN

Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue.


Asunto(s)
Movimiento Celular , Polaridad Celular , Quimiocina CXCL12/metabolismo , Células Germinativas/citología , Espacio Intracelular/metabolismo , Seudópodos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Endocitosis/efectos de los fármacos , Células Germinativas/metabolismo , Modelos Biológicos , Receptores CXCR4/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
3.
Nat Commun ; 6: 5846, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25556612

RESUMEN

Paracrine Wnt/ß-catenin signalling is important during developmental processes, tissue regeneration and stem cell regulation. Wnt proteins are morphogens, which form concentration gradients across responsive tissues. Little is known about the transport mechanism for these lipid-modified signalling proteins in vertebrates. Here we show that Wnt8a is transported on actin-based filopodia to contact responding cells and activate signalling during neural plate formation in zebrafish. Cdc42/N-Wasp regulates the formation of these Wnt-positive filopodia. Enhanced formation of filopodia increases the effective signalling range of Wnt by facilitating spreading. Consistently, reduction in filopodia leads to a restricted distribution of the ligand and a limited signalling range. Using a simulation, we provide evidence that such a short-range transport system for Wnt has a long-range signalling function. Indeed, we show that a filopodia-based transport system for Wnt8a controls anteroposterior patterning of the neural plate during vertebrate gastrulation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas del Citoesqueleto/metabolismo , Placa Neural/embriología , Seudópodos/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Simulación por Computador , Fibroblastos/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Ratones , Microscopía Confocal , Oligonucleótidos Antisentido/genética , Plásmidos/genética , Transporte de Proteínas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de Unión al GTP cdc42/metabolismo
4.
Nat Commun ; 5: 5758, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25502622

RESUMEN

Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.


Asunto(s)
Arterias/crecimiento & desarrollo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Neovascularización Fisiológica , Receptores CXCR4/metabolismo , Venas/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/irrigación sanguínea , Aletas de Animales/citología , Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Arterias/citología , Arterias/metabolismo , Linaje de la Célula/genética , Movimiento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliales/citología , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Ratones , Receptores CXCR4/genética , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo , Venas/citología , Venas/metabolismo , Grabación en Video , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Proc Natl Acad Sci U S A ; 111(31): 11389-94, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049415

RESUMEN

The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.


Asunto(s)
Movimiento Celular , Proteínas RGS/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular/genética , Polaridad Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas RGS/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...