Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(17): 19219-19226, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708205

RESUMEN

Graphite, widely adopted as an anode for lithium-ion batteries (LIBs), faces challenges such as an unsustainable supply chain and sluggish rate capabilities. This emphasizes the urgent need to explore alternative anode materials for LIBs, aiming to resolve these challenges and drive the advancement of more efficient and sustainable battery technologies. The present research investigates the potential of lead zirconate titanate (PZT: PbZr0.53Ti0.47O3) as an anode material for LIBs. Bulk PZT materials were synthesized by using a solid-state reaction, and the electrochemical performance as an anode was examined. A high initial discharge capacity of approximately 686 mAh/g was attained, maintaining a stable capacity of around 161 mAh/g after 200 cycles with diffusion-controlled intercalation as the primary charge storage mechanism in a PZT anode. These findings suggest that PZT exhibits a promising electrochemical performance, positioning it as a potential alternative anode material for LIBs.

2.
ACS Appl Mater Interfaces ; 16(2): 2251-2262, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38181451

RESUMEN

One strategy for addressing the climate crisis caused by CO2 emissions is to efficiently convert CO2 to advanced materials suited for green and clean energy technology applications. Porous carbon is widely used as an advanced energy storage material because of its enhanced energy storage capabilities as an anode. Herein, we report electrochemical CO2 upcycling to solid carbon with a controlled microstructure and porosity in a ternary molten carbonate melt at 450 °C. Controlling the electrochemical parameters (voltage, temperature, cathode material) enabled the conversion of CO2 to porous carbon with a tunable morphology and porosity for the first time at such a low temperature. Additionally, a well-controlled morphology and porosity are beneficial for reversible energy storage. In fact, these carbon materials delivered high specific capacity, stable cycling performances, and exceptional rate capability even under extremely fast charging conditions when integrated as an anode in lithium-ion batteries (LIBs). The present approach not only demonstrated efficient upcycling of CO2 into porous carbon suitable for enhanced energy storage but can also contribute to a clean and green energy technology that can reduce carbon emissions to achieve sustainable energy goals.

3.
ACS Appl Mater Interfaces ; 15(9): 11703-11712, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812428

RESUMEN

Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 µg h-1 mgcat.-1 (corresponding to 10.5 µg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.

4.
ACS Appl Mater Interfaces ; 15(8): 10554-10569, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791306

RESUMEN

Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si-R or Si-O-R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g-1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.

5.
Angew Chem Int Ed Engl ; 62(5): e202217323, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36478096

RESUMEN

Supported Pd single atom catalysts (SACs) have triggered great research interest in methane combustion yet with contradicting views on their activity and stability. Here, we show that the Pd SAs can take different electronic structure and atomic geometry on ceria support, resulting in different catalytic properties. By a simple thermal pretreatment to ceria prior to Pd deposition, a unique anchoring site is created. The Pd SA, taking this site, can be activated to Pdδ+ (0<δ<2) that has greatly enhanced activity for methane oxidation: T50 lowered by up to 130 °C and almost 10 times higher turnover frequency compared to the untreated catalyst. The enhanced activity of Pdδ+ site is related to its oxygen-deficient local structure and elongated interacting distance with ceria, leading to enhanced capability in delivering reactive oxygen species and decomposing reaction intermediates. This work provides insights into designing highly efficient Pd SACs for oxidation reactions.

6.
JACS Au ; 2(5): 1096-1104, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647601

RESUMEN

Featuring high olefin selectivity, hexagonal boron nitride (h-BN) has emerged recently as an attractive catalyst for oxidative dehydrogenation of propane (ODHP). Herein, we report that dispersion of vanadium oxide onto BN facilitates the oxyfunctionalization of BN to generate more BO x active sites to catalyze ODHP via the Eley-Rideal mechanism and concurrently produce nitric oxide to initiate additional gas-phase radical chemistry and to introduce redox VO x sites to catalyze ODHP via the Mars-van Krevelen mechanism, all of which promote the catalytic performance of BN for ODHP. As a result, loading 0.5 wt % V onto BN has doubled the yield of light alkene (C2-C3) at 540-580 °C, and adding an appropriate concentration of NO in the reactants further enhances the catalytic performance. These results provide a potential strategy for developing efficient h-BN-based catalysts through coupling gas-phase and surface reactions for the ODHP process.

7.
Langmuir ; 38(18): 5439-5453, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35443130

RESUMEN

Enhancing the separation of rare-earth elements (REEs) from gangue materials in mined ores requires an understanding of the fundamental interactions driving the adsorption of collector ligands onto mineral interfaces. In this work, we examine five functionalized hydroxamic acid ligands as potential collectors for the REE-containing bastnäsite mineral in froth flotation using density functional theory calculations and a suite of surface-sensitive analytical spectroscopies. These include vibrational sum frequency generation, attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies. Differences in the chemical makeup of these ligands on well-defined bastnäsite and calcite surfaces allow for a systematic relationship connecting the structure to adsorption activity to be framed in the context of interfacial molecular recognition. We show how the intramolecular hydrogen bonding of adsorbed ligands requires the inclusion of explicit water solvent molecules to correctly map energetic and structural trends measured by experiments. We anticipate that the results and insights from this work will motivate and inform the design of improved flotation collectors for REE ores.

9.
ACS Appl Mater Interfaces ; 13(46): 55145-55155, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34780156

RESUMEN

TiNb2O7 (TNO) is regarded as one of the promising next-generation anode materials for lithium-ion batteries (LIBs) due to its high rate capabilities, higher theoretical capacity, and higher lithiation voltage. This enables the cycling of TNO-based anodes under extreme fast charging (XFC) conditions with a minimal risk of lithium plating compared to that of graphite anodes. Here, the gas evolution in real time with TNO-based pouch cells is first reported via operando mass spectrometry. The main gases are identified to be CO2, C2H4, and O2. A solid-electrolyte interphase is detected on TNO, which continues evolving, forming, and dissolving with the lithiation and delithiation of TNO. The gas evolution can be significantly reduced when a protective coating is applied on the TNO particles, reducing the CO2 and C2H4 evolution by ∼2 and 5 times, respectively, at 0.1C in a half-cell configuration. The reduction on gas generation in full cells is even more pronounced. The surface coating also enables 20% improvement in capacity under XFC conditions.

10.
ACS Appl Mater Interfaces ; 13(32): 38221-38228, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34347420

RESUMEN

Disordered rocksalt (DRX) cathodes have attracted interest due to their high capacity and compositional flexibility (e.g., Co-free chemistries). However, the sloping voltage profile and gradual capacity fade during cycling have hindered the widespread adoption of these materials. Simulations predict that fluorine substitution in DRX cathodes will improve their capacity, rate performance, and cyclability. In this study, we use a fluidized bed reactor to fluorinate a model Li-rich DRX composition (Li1.15Ni0.375Ti0.375Mo0.1O2, NTMO) to investigate how fluorine content impacts the cathode's structure and electrochemical performance. Instead of substituting O with F to form oxyfluoride phases, direct fluorination of DRX cathodes leads to the formation of LiF surface films, which improves the specific energy and capacity retention. This study demonstrates the feasibility of direct fluorination to improve the electrochemical performance of high-voltage cathodes by tuning the material's surface chemistry.

11.
J Am Chem Soc ; 143(23): 8521-8526, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34081447

RESUMEN

Strong metal-support interaction (SMSI) construction is a pivotal strategy to afford thermally robust nanocatalysts in industrial catalysis, but thermally induced reactions (>300 °C) in specific gaseous atmospheres are generally required in traditional procedures. In this work, a photochemistry-driven methodology was demonstrated for SMSI construction under ambient conditions. Encapsulation of Pd nanoparticles with a TiOx overlayer, the presence of Ti3+ species, and suppression of CO adsorption were achieved upon UV irradiation. The key lies in the generation of separated photoinduced reductive electrons (e-) and oxidative holes (h+), which subsequently trigger the formation of Ti3+ species/oxygen vacancies (Ov) and then interfacial Pd-Ov-Ti3+ sites, affording a Pd/TiO2 SMSI with enhanced catalytic hydrogenation efficiency. The as-constructed SMSI layer was reversible, and the photodriven procedure could be extended to Pd/ZnO and Pt/TiO2.

12.
ACS Appl Mater Interfaces ; 13(17): 20070-20080, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900730

RESUMEN

Exploring cost-effective and efficient bifunctional electrocatalysts via simple fabrication strategies is strongly desired for practical water splitting. Herein, an easy and fast one-step electrodeposition process is developed to fabricate W-doped NiFe (NiFeW)-layered double hydroxides with ultrathin nanosheet features at room temperature and ambient pressure as bifunctional catalysts for water splitting. Notably, the NiFeW nanosheets require overpotentials of only 239 and 115 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, to reach a current density of 10 mA/cm2 in alkaline media. Their exceptional performance is further demonstrated in a full electrolyzer configuration with the NiFeW as both anode and cathode catalysts, which achieves a low cell voltage of 1.59 V at 10 mA/cm2, 110 mV lower than that of the commercial IrO2 (anode) and Pt (cathode) catalysts. Moreover, the NiFeW nanosheets are superior to various recently reported bifunctional electrocatalysts. Such remarkable performances mainly ascribe to W doping, which not only effectively modulates the electrocatalyst morphology but also engineers the electronic structure of NiFe hydroxides to boost charge-transfer kinetics for both the OER and HER. Hence, the ultrathin NiFeW nanosheets with an efficient fabrication strategy are promising as bifunctional electrodes for alkaline water electrolyzers.

13.
Zootaxa ; 4933(4): zootaxa.4933.4.4, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33756777

RESUMEN

A new Tardigrada species, Claxtonia goni sp. nov. is described from specimens collected in the central area of the Haleakala National Park, the island of Maui, Hawaii, U.S.A. The new species and Clx. pardalis (Degma Schill, 2015) together with several examples of Clx. wendti (Richters, 1903) are the only known Claxtonia species with the plates having an intracuticular pattern resembling that on a leopard's fur. Claxtonia goni sp. nov. differs from Clx. pardalis in the absence of pores on leg plates, in smaller and uniform pores on dorso-lateral plates, in very unequally spaced teeth in the dentate collar, in lesser ratio of internal cephalic cirrus and lateral cirrus A lengths, and in relatively shorter claws in fourth pair of legs. The differences between the new species and the other congeners as well as Echiniscus species with the same cirri composition and similar cuticular sculpture are also defined. The diagnosis of the genus Claxtonia is amended and three Echiniscus species are transferred into the genus with the proposed new combinations: Claxtonia aliquantilla (Grigarick, Schuster Nelson, 1983) comb. nov., Clx. mosaica (Grigarick, Schuster Nelson, 1983) comb. nov. and Clx. nigripustula (Horning, Schuster Grigarick, 1978) comb. nov..


Asunto(s)
Tardigrada , Animales , Hawaii , Islas , Océano Pacífico
14.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723013

RESUMEN

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.


Asunto(s)
Biocombustibles , Ácidos Grasos Volátiles/metabolismo , Alimentos , Eliminación de Residuos , Aviación , Catálisis , Gases de Efecto Invernadero , Metano
15.
ACS Appl Mater Interfaces ; 13(3): 4393-4401, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33433992

RESUMEN

Graphite, an essential component of energy storage devices, is traditionally synthesized via an energy-intensive thermal process (Acheson process) at ∼3300 K. However, the battery performance of such graphite is abysmal under fast-charging conditions, which is deemed essential for the propulsion of electric vehicles to the next level. Herein, a low-temperature electrochemical transformation approach has been demonstrated to afford a highly crystalline nano-graphite with the capability of tuning interlayer spacing to enhance the lithium diffusion kinetics in molten salts at 850 °C. The essence of our strategy lies in the effective electrocatalytic transformation of carbon to graphite at a lower temperature that could significantly increase the energy savings, reduce the cost, shorten the synthesis time, and replace the traditional graphite synthesis. The resulting graphite exhibits high purity, crystallinity, a high degree of graphitization, and a nanoflake architecture that all ensure fast lithium diffusion kinetics (∼2.0 × 10-8 cm2 s-1) through its nanosheet. Such unique features enable outstanding electrochemical performance (∼200 mA h g-1 at 5C for 1000 cycles, 1C = 372 mA g-1) as a fast-charging anode for lithium-ion batteries. This finding paves the way to make high energy-density fast-charging batteries that could boost electromobility.

16.
ACS Appl Polym Mater ; 3(2): 1022-1031, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556233

RESUMEN

The current severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) pandemic has highlighted the need for personal protective equipment, specifically filtering facepiece respirators like N95 masks. While it is common knowledge that polypropylene (PP) is the industry standard material for filtration media, trial and error is often required to identify suitable commercial precursors for filtration media production. This work aims to identify differences between several commercial grades of PP and demonstrate the development of N95 filtration media with the intent that the industry partners can pivot and help address N95 shortages. Three commercial grades of high melt flow index PP were melt blown at Oak Ridge National Laboratory and broadly characterized by several methods including differential scanning calorimetry (DSC), X-ray diffraction (XRD), and neutron scattering. Despite the apparent similarities (high melt flow and isotacticity) between PP feedstocks, the application of corona charging and charge enhancing additives improve each material to widely varying degrees. From the analysis performed here, the most differentiating factor appears to be related to crystallization of the polymer and the resulting electret formation. Materials with higher crystallization onset temperatures, slower crystallization rates, and larger number of crystallites form a stronger electret and are more effective at filtration.

17.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867130

RESUMEN

The mechanical and thermal conductivity properties of two composite elastomers were studied. Styrene-butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica nanofibers, and styrene-butadiene-styrene (SBS) block copolymers filled with graphene oxide. For the SBR composites, GO fillers with two different surface functionalities were synthesized (cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol-gel precursor solution. The surface chemistry of the functionalized fillers was studied in detail. The properties of the composites and the synergistic improvements between the GO and SnFs are presented. For the SBS composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using liquid mixing. Characterization of the filler material and the composite elastomers was performed using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, nanoindentation, thermal conductivity and abrasion testing.

18.
Adv Mater ; 32(34): e2002960, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32671935

RESUMEN

In recent years, cobalt has become a critical constraint on the supply chain of the Li-ion battery industry. With the ever-increasing projections for electric vehicles, the dependency of current Li-ion batteries on the ever-fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt-free materials with general formula of LiNix Fey Alz O2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt-free materials are synthesized using the sol-gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X-ray diffraction, and Mössbauer and X-ray photoelectron spectroscopy to investigate their morphological, physical, and crystal-structure properties. Operando experiments by X-ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li-ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g-1 , demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next-generation cobalt-free lithium-ion batteries is highlighted here.

19.
ChemSusChem ; 13(14): 3654-3661, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32356937

RESUMEN

The formation of a solid-electrolyte interphase (SEI) on the surface of Li4 Ti5 O12 (LTO) has become a highly controversial topic, with arguments for it and against it. However, prior studies supporting the formation of an SEI layer have typically suggested that a layer forms upon cycling of a cell, although the layer is probed after disassembling. In this study, cubic mesostructured LTO is synthesized with crystallite domain sizes between 3 and 4 nm and uniform pores with diameters ≤8 nm. The mean pore size is controlled between 4-8 nm through the use of a triblock amphipathic copolymer with a tunable hydrophobic block as template and by thermal treatment. The LTO morphology obtained is spherical and evolves upon heat treatment. These materials show excellent electrochemical performance, including high rate capability and capacity retention. The LTO material is subjected to operando small-angle neutron scattering and X-ray photoelectron spectroscopy experiments, which reveal that the highly debated SEI forms at potentials as high as 2.2 V, first as a LiF-rich layer and subsequently by the growth of a carbonaceous layer. These SEI products form first on the smaller pores before forming on the mesopores.

20.
ChemSusChem ; 13(15): 3825-3834, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460419

RESUMEN

High-capacity metal oxide conversion anodes for lithium-ion batteries (LIBs) are primarily limited by their poor reversibility and cycling stability. In this study, a promising approach has been developed to improve the electrochemical performance of a MoO2 anode by direct fluorination of the prelithiated MoO2 . The fluorinated anode contains a mixture of crystalline MoO2 and amorphous molybdenum oxyfluoride phases, as determined from a suite of characterization methods including X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, and scanning transmission electron microscopy. Electrochemical measurements indicate that fluorination facilitates the conversion reaction kinetics, which leads to increased capacity, higher coulombic efficiency, and better cycling stability as compared to the nonfluorinated samples. These results suggest that fluorination after prelithiation not only favors formation of the oxyfluoride phase but also improves the lithium-ion diffusivity and reversibility of the conversion reaction, making it an attractive approach to address the problems of conversion electrodes. These findings provide a new route to design high-capacity negative electrodes for LIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...