Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39464078

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) accounts for 20% of all skin cancer deaths globally, making it the second-highest subtype of skin cancer. The prevalence of cSCC in humans, as well as the poor capacity for an efficient prognosis, highlights the need to uncover alternative actors and mechanisms at the foundation of skin cancer development. Significant advances have been made to better understand some key factors in cSCC progression. However, little is known about the role of noncoding RNAs, particularly of a specific category called long noncoding RNA (lncRNA). By performing pseudobulk analysis of single-cell sequencing data from normal and cSCC human skin tissues, we determined a global portfolio of lncRNAs specifically expressed in keratinocyte subpopulations. Integration of CRISPR interference screens in vitro and the xenograft model identified several lncRNAs impacting the growth of cSCC cancer lines both in vitro and in vivo. Among these, we further validated LINC00704 and LINC01116 as proliferation-regulating lncRNAs in cSCC lines and potential biomarkers of cSCC progression. Taken together, our study provides a comprehensive signature of lncRNAs with roles in regulating cSCC progression.

2.
J Invest Dermatol ; 143(11): 2177-2192.e13, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37142187

RESUMEN

Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell-type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.


Asunto(s)
Enfermedades de la Piel , Transcriptoma , Humanos , Animales , Ratones , Piel , Queratinocitos/metabolismo , Epidermis/patología , Enfermedades de la Piel/patología , Comunicación Celular
3.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608661

RESUMEN

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Asunto(s)
ARN Helicasas DEAD-box , Glucosa , Queratinocitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glucosa/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Humanos
4.
PLoS Pathog ; 17(10): e1009412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597346

RESUMEN

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Parásitos/fisiología , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Humanos , Biosíntesis de Proteínas/fisiología , Proteoma/metabolismo
5.
bioRxiv ; 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33655243

RESUMEN

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2. AUTHOR SUMMARY: SARS-CoV-2 is the latest pathogenic coronavirus to emerge as a public health threat. We create a database of proximal host proteins to 17 SARS-CoV-2 viral proteins. We validate that NSP1 is proximal to the EIF3 translation initiation complex and is a potent inhibitor of translation. We also identify ORF6 antagonism of RNA-mediate innate immune signaling. We produce a database of potential host targets of the viral protease NSP5, and create a fluorescence-based assay to screen cleavage of peptide sequences. We believe that this data will be useful for identifying roles for many of the uncharacterized SARS-CoV-2 proteins and provide insights into the pathogenicity of new or emerging coronaviruses.

7.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579974

RESUMEN

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Genómica/métodos , Neoplasias Cutáneas/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , RNA-Seq , Análisis de la Célula Individual , Piel/metabolismo , Neoplasias Cutáneas/patología , Transcriptoma , Trasplante Heterólogo
8.
Front Microbiol ; 9: 389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568286

RESUMEN

Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-ß and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-ß and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-ß and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.

9.
PLoS Pathog ; 13(1): e1006171, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28107544

RESUMEN

Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-ß signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.


Asunto(s)
Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Receptores Notch/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Epidermodisplasia Verruciforme/virología , Células HCT116 , Humanos , Queratinocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas Virales/genética , Fosforilación , Unión Proteica/fisiología , Transducción de Señal , Neoplasias Cutáneas/virología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
11.
mBio ; 4(6): e00845-13, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24194542

RESUMEN

UNLABELLED: Most DNA viruses associate with, and reorganize, nuclear domain 10 (ND10) bodies upon entry into the host nucleus. In this study, we examine the roles of the ND10 components PML, Sp100, and Daxx in the establishment of human papillomavirus type 18 (HPV18) infection of primary human keratinocytes. HPV18 DNA or HPV18 quasivirus was introduced into primary human keratinocytes depleted of each ND10 protein by small interfering RNA technology, and genome establishment was determined by using a quantitative immortalization assay and measurements of viral transcription and DNA replication. Keratinocyte depletion of Sp100 resulted in a substantial increase in the number of HPV18-immortalized colonies and a corresponding increase in viral transcription and DNA replication. However, Sp100 repressed viral transcription and replication only during the initial stages of viral establishment, suggesting that Sp100 acts as a repressor of incoming HPV DNA. IMPORTANCE: The intrinsic immune system provides a first-line defense against invading pathogens. Host cells contain nuclear bodies (ND10) that are important for antiviral defense, yet many DNA viruses localize here upon cell entry. However, viruses also disrupt, reorganize, and modify individual components of the bodies. In this study, we show that one of the ND10 components, Sp100, limits the infection of human skin cells by human papillomavirus (HPV). HPVs are important pathogens that cause many types of infection of the cutaneous and mucosal epithelium and are the causative agents of several human cancers. Understanding how host cells counteract HPV infection could provide insight into antimicrobial therapies that could limit initial infection.


Asunto(s)
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Papillomavirus Humano 18/inmunología , Queratinocitos/inmunología , Queratinocitos/virología , Antígenos Nucleares/genética , Autoantígenos/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Papillomavirus Humano 18/crecimiento & desarrollo , Humanos
12.
J Virol ; 87(8): 4762-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365452

RESUMEN

Cutaneous ß-human papillomavirus (ß-HPV) E6 proteins inhibit NOTCH signaling by associating with the transcriptional coactivator MAML1. NOTCH has tumor suppressor activities in epithelial cells and is activated during keratinocyte differentiation. Here we report that HPV type 8 (HPV8) E6 subverts NOTCH activation during keratinocyte differentiation by inhibiting RBPJ/MAML1 transcriptional activator complexes at NOTCH target DNA. NOTCH inhibition impairs epithelial differentiation and may thus contribute to ß-HPV replication and viral oncogenesis.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Queratinocitos/virología , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/patogenicidad , Receptores Notch/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Células Cultivadas , Humanos , Queratinocitos/fisiología , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...