Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747926

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the normalization of COVID-19 globally, it is crucial to construct a prediction model that enables clinicians to identify patients at risk for ProLOS based on demographics and serum inflammatory biomarkers. METHODS: The study included hospitalized patients with a confirmed diagnosis of COVID-19. These patients were randomly grouped into a training (80%) and a test (20%) cohort. The LASSO regression and ten-fold cross-validation method were applied to filter variables. The training cohort utilized multifactorial logistic regression analyses to identify the independent factors of ProLOS in COVID-19 patients. A 4-variable nomogram was created for clinical use. ROC curves were plotted, and the area under the curve (AUC) was calculated to evaluate the model's discrimination; calibration analysis was planned to assess the validity of the nomogram, and decision curve analysis (DCA) was used to evaluate the clinical usefulness of the model. RESULTS: The results showed that among 310 patients with COVID-19, 80 had extended hospitalization (80/310). Four independent risk factors for COVID-19 patients were identified: age, coexisting chronic respiratory diseases, white blood cell count (WBC), and serum albumin (ALB). A nomogram based on these variables was created. The AUC in the training cohort was 0.808 (95% CI: 0.75 - 0.8671), and the AUC in the test cohort was 0.815 (95% CI: 0.7031 - 0.9282). The model demonstrates good calibration and can be used with threshold probabilities ranging from 0% to 100% to obtain clinical net benefits. CONCLUSIONS: A predictive model has been created to accurately predict whether the hospitalization duration of COVID-19 patients will be prolonged. This model incorporates serum WBC, ALB levels, age, and the presence of chronic respiratory system diseases.


Asunto(s)
COVID-19 , Tiempo de Internación , Nomogramas , Humanos , COVID-19/diagnóstico , COVID-19/sangre , COVID-19/epidemiología , COVID-19/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Anciano , Tiempo de Internación/estadística & datos numéricos , Factores de Riesgo , SARS-CoV-2 , Adulto , Curva ROC , Hospitalización , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...