Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
2.
Res Sq ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39315268

RESUMEN

Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition characterized by painful nodules, abscesses, and scarring, predominantly affecting intertriginous regions. This study aimed to utilize single cell RNA and cell-surface protein sequencing (CITE-Seq) to delineate the immune composition of circulating cells in Hidradenitis suppurativa (HS) peripheral blood compared to healthy controls. CITE-Seq was used to analyze the gene and protein expression profiles of peripheral blood mononuclear cells (PBMCs) from 9 HS and 29 healthy controls. The study identified significant differences cell composition between HS patients and healthy controls, including increased proportions of CD14+ and CD16+ monocytes, cDC2, plasmablasts, and proliferating CD4+ T cells in HS patients. Differential expression analysis revealed upregulation of inflammatory markers such as TNF, IL1B, and NF-κB in monocytes, as well as chemokines and cell adhesion molecules involved in immune cell recruitment and tissue infiltration. Pathway enrichment analysis highlighted the involvement of IL-17, IL-26 and TNF signaling pathways in HS pathogenesis. Machine learning identified key markers for diagnostics and therapeutic development. The findings also support the potential for machine learning models to aid in the diagnosis of HS based on immune cell markers. These insights may inform future therapeutic strategies targeting specific immune pathways in HS.

3.
Vaccines (Basel) ; 12(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39340067

RESUMEN

GSK-3ß plays a critical role in regulating the Wnt/ß-catenin signaling pathway, and manipulating GSK-3ß in dendritic cells (DCs) has been shown to improve the antitumor efficacy of DC vaccines. Since the inhibition of GSK-3ß leads to the activation of ß-catenin, we hypothesize that blocking GSK-3ß in DCs negatively regulates DC-mediated CD8 T cell immunity and antitumor immunity. Using CD11c-GSK-3ß-/- conditional knockout mice in which GSK-3ß is genetically deleted in CD11c-expressing DCs, we surprisingly found that the deletion of GSK-3ß in DCs resulted in increased antitumor immunity, which contradicted our initial expectation of reduced antitumor immunity due to the presumed upregulation of ß-catenin in DCs. Indeed, we found by both Western blot and flow cytometry that the deletion of GSK-3ß in DCs did not lead to augmented expression of ß-catenin protein, suggesting that GSK-3ß exerts its function independent of ß-catenin. Supporting this notion, our single-cell RNA sequencing (scRNA-seq) analysis revealed that GSK-3ß-deficient DCs exhibited distinct gene expression patterns with minimally overlapping differentially expressed genes (DEGs) compared to DCs with activated ß-catenin. This suggests that the deletion of GSK-3ß in DCs is unlikely to lead to upregulation of ß-catenin at the transcriptional level. Consistent with enhanced antitumor immunity, we also found that CD11c-GSK-3ß-/- mice exhibited significantly augmented cross-priming of antigen-specific CD8 T cells following DC-targeted vaccines. We further found that the deletion of GSK-3ß in DCs completely abrogated memory CD8 T cell responses, suggesting that GSK-3ß in DCs also plays a negative role in regulating the differentiation and/or maintenance of memory CD8 T cells. scRNA-seq analysis further revealed that although the deletion of GSK-3ß in DCs positively regulated transcriptional programs for effector differentiation and function of primed antigen-specific CD8 T cells in CD11c-GSK-3ß-/- mice during the priming phase, it resulted in significantly reduced antigen-specific memory CD8 T cells, consistent with diminished memory responses. Taken together, our data demonstrate that GSK-3ß in DCs has opposite functions in regulating cross-priming and memory CD8 T cell responses, and GSK-3ß exerts its functions independent of its regulation of ß-catenin. These novel insights suggest that targeting GSK-3ß in cancer immunotherapies must consider its dual role in CD8 T cell responses.

5.
J Invest Dermatol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901775

RESUMEN

Methods for describing and reporting the clinical and histologic characteristics of cutaneous tissue samples from patients with hidradenitis suppurativa (HS) are not currently standardized, limiting clinicians' and scientists' ability to uniformly record, report, and communicate about the characteristics of tissue used in translational experiments. A recently published consensus statement outlined morphological definitions of typical HS lesions, but no consensus has been reached regarding clinical characterization and examination of HS tissue samples. In this study, we aimed to establish a protocol for reporting histopathologic and clinical characteristics of HS tissue specimens. This study was conducted from May 2023 to August 2023. Experts in clinical care, dermatopathology, and translational research were recruited, and a modified Delphi technique was used to develop a protocol for histologic reporting and clinical characterization of submitted tissue specimens from patients with HS. A total of 27 experts participated (14 dermatologists, 3 fellowship-trained dermatopathologists, 3 plastic surgeons, 3 general surgeons, and 4 research scientists) in creating and reviewing protocols for the clinical and histopathological examination of HS tissue specimens. The protocols were formatted as a synoptic report and will help to consistently classify specimens in biobanks on the basis of histologic features and more accurately report and select samples used in translational research projects.

6.
Vaccines (Basel) ; 12(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793711

RESUMEN

Recent studies have demonstrated that ß-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how ß-catenin exerts its functions remain incompletely understood. Here, we report that activation of ß-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-ß-cateninactive mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100. Single-cell RNA sequencing (scRNA-seq) analysis revealed that ß-catenin in DCs negatively regulated transcription programs for effector function and proliferation of primed Pmel-1 cells, correlating with suppressed CD8 T cell immunity in CD11c-ß-cateninactive mice. Further experiments showed that treating CD11c-ß-cateninactive mice with an anti-Tim-3 antibody upon anti-DEC-205-hgp100 vaccination led to restored cross-priming and memory responses of gp100-specific CD8 T cells, suggesting that anti-Tim-3 treatment likely synergizes with DC vaccines to improve their efficacy. Indeed, treating B16F10-bearing mice with DC vaccines using anti-DEC-205-hgp100 in combination with anti-Tim-3 treatment resulted in significantly reduced tumor growth compared with treatment with the DC vaccine alone. Taken together, we identified the ß-catenin/Tim-3 axis as a potentially novel mechanism to inhibit anti-tumor CD8 T cell immunity and that combination immunotherapy of a DC-targeted vaccine with anti-Tim-3 treatment leads to improved anti-tumor efficacy.

7.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711064

RESUMEN

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Asunto(s)
Acrilamidas , Gota , Histona Desacetilasas , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilendiaminas , Ácido Úrico , Animales , Ácido Úrico/toxicidad , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/deficiencia , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Gota/metabolismo , Gota/patología , Ratones , Inflamación/metabolismo , Inflamación/inducido químicamente , Masculino , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
8.
Cancer ; 130(14): 2416-2439, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687639

RESUMEN

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.


Asunto(s)
Histiocitosis de Células de Langerhans , Humanos , Histiocitosis de Células de Langerhans/tratamiento farmacológico
10.
Artículo en Inglés | MEDLINE | ID: mdl-37734594

RESUMEN

BACKGROUND & AIMS: The nuclear receptor coactivator 5 (NCOA5) is a putative type 2 diabetes susceptibility gene. NCOA5 haploinsufficiency results in the spontaneous development of nonalcoholic fatty liver disease (NAFLD), insulin resistance, and hepatocellular carcinoma (HCC) in male mice; however, the cell-specific effect of NCOA5 haploinsufficiency in various types of cells, including macrophages, on the development of NAFLD and HCC remains unknown. METHODS: Control and myeloid-lineage-specific Ncoa5 deletion (Ncoa5ΔM/+) mice fed a normal diet were examined for the development of NAFLD, nonalcoholic steatohepatitis (NASH), and HCC. Altered genes and signaling pathways in the intrahepatic macrophages of Ncoa5ΔM/+ male mice were analyzed and compared with those of obese human individuals. The role of platelet factor 4 (PF4) in macrophages and the underlying mechanism by which PF4 affects NAFLD/NASH were explored in vitro and in vivo. PF4 expression in HCC patient specimens and prognosis was examined. RESULTS: Myeloid-lineage-specific Ncoa5 deletion sufficiently causes spontaneous NASH and HCC development in male mice fed a normal diet. PF4 overexpression in Ncoa5ΔM/+ intrahepatic macrophages is identified as a potent mediator to trigger lipid accumulation in hepatocytes by inducing lipogenesis-promoting gene expression. The transcriptome of intrahepatic macrophages from Ncoa5ΔM/+ male mice resembles that of obese human individuals. High PF4 expression correlated with poor prognosis of HCC patients and increased infiltrations of M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells in HCCs. CONCLUSIONS: Our findings reveal a novel mechanism for the onset of NAFLD/NASH and HCC initiated by NCOA5-deficient macrophages, suggesting the NCOA5-PF4 axis in macrophages as a potential target for developing preventive and therapeutic interventions against NAFLD/NASH and HCC.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Carcinoma Hepatocelular/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Neoplasias Hepáticas/patología , Diabetes Mellitus Tipo 2/complicaciones , Haploinsuficiencia , Factores de Transcripción/metabolismo , Obesidad/complicaciones , Obesidad/genética , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo
13.
Cell Rep ; 42(10): 113157, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37733590

RESUMEN

Sex differences in hepatocellular carcinoma (HCC) development are regulated by sex and non-sex chromosomes, sex hormones, and environmental factors. We previously reported that Ncoa5+/- mice develop HCC in a male-biased manner. Here we show that NCOA5 expression is reduced in male patient HCCs while the expression of an NCOA5-interacting tumor suppressor, TIP30, is lower in female HCCs. Tip30 heterozygous deletion does not change HCC incidence in Ncoa5+/- male mice but dramatically increases HCC incidence in Ncoa5+/- female mice, accompanied by hepatic hyperpolarization-activated cyclic nucleotide-gated cation channel 3 (HCN3) overexpression. HCN3 overexpression cooperates with MYC to promote mouse HCC development, whereas Hcn3 knockout preferentially hinders HCC development in female mice. Furthermore, HCN3 amplification and overexpression occur in human HCCs and correlate with a poorer prognosis of patients in a female-biased manner. Our results suggest that TIP30 and NCOA5 protect against female liver oncogenesis and that HCN3 is a female-biased HCC driver.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Coactivadores de Receptor Nuclear/genética , Factores de Transcripción/metabolismo
14.
Biology (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508356

RESUMEN

Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-ß and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation.

15.
J Invest Dermatol ; 143(12): 2397-2407.e8, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37419445

RESUMEN

Keratoacanthoma (KA) is a common keratinocyte neoplasm that is regularly classified as a type of cutaneous squamous cell carcinoma (cSCC) despite demonstrating benign behavior. Differentiating KA from well-differentiated cSCC is difficult in many cases due to the substantial overlap of clinical and histological features. Currently, no reliable discriminating markers have been defined, and consequently, KAs are often treated similarly to cSCC, creating unnecessary surgical morbidity and healthcare costs. In this study, we used RNA sequencing to identify key differences in transcriptomes between KA and cSCC, which suggested divergent keratinocyte populations between each tumor. Imaging mass cytometry was then used to identify single-cell tissue characteristics, including cellular phenotype, frequency, topography, functional status, and interactions between KA and well-differentiated cSCC. We found that cSCC had significantly increased proportions of Ki67+ keratinocytes among tumor keratinocytes, which were dispersed significantly throughout non-basal keratinocyte communities. In cSCC, regulatory T-cells were more prevalent and held greater suppressive capacity. Furthermore, cSCC regulatory T-cells, tumor-associated macrophages, and fibroblasts had significant associations with Ki67+ keratinocytes as opposed to avoidances with KA, indicating a more immunosuppressive environment. Our data suggest that multicellular spatial features can serve as a foundation to enhance the histological discrimination of ambiguous KA and cSCC lesions.


Asunto(s)
Carcinoma de Células Escamosas , Queratoacantoma , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Queratoacantoma/diagnóstico , Queratoacantoma/genética , Antígeno Ki-67 , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Queratinocitos
16.
Cell Discov ; 9(1): 61, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336875

RESUMEN

Unlike conventional αßT cells, invariant natural killer T (iNKT) cells complete their terminal differentiation to functional iNKT1/2/17 cells in the thymus. However, underlying molecular programs that guide iNKT subset differentiation remain unclear. Here, we profiled the transcriptomes of over 17,000 iNKT cells and the chromatin accessibility states of over 39,000 iNKT cells across four thymic iNKT developmental stages using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to define their developmental trajectories. Our study discovered novel features for iNKT precursors and different iNKT subsets and indicated that iNKT2 and iNKT17 lineage commitment may occur as early as stage 0 (ST0) by two distinct programs, while iNKT1 commitments may occur post ST0. Both iNKT1 and iNKT2 cells exhibit extensive phenotypic and functional heterogeneity, while iNKT17 cells are relatively homogenous. Furthermore, we identified that a novel transcription factor, Cbfß, was highly expressed in iNKT progenitor commitment checkpoint, which showed a similar expression trajectory with other known transcription factors for iNKT cells development, Zbtb16 and Egr2, and could direct iNKT cells fate and drive their effector phenotype differentiation. Conditional deletion of Cbfß blocked early iNKT cell development and led to severe impairment of iNKT1/2/17 cell differentiation. Overall, our findings uncovered distinct iNKT developmental programs as well as their cellular heterogeneity, and identified a novel transcription factor Cbfß as a key regulator for early iNKT cell commitment.

17.
Front Immunol ; 14: 1167021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215102

RESUMEN

Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition that can manifest with abscesses, sinus tracts, and scarring in the intertriginous areas of the body. HS is characterized by immune dysregulation, featuring elevated levels of myeloid cells, T helper (Th) cells, and pro-inflammatory cytokines, particularly those involved in Th1- and Th17-mediated immunity. In most epidemiological studies, HS shows a strong female sex bias, with reported female-to-male ratios estimated at roughly 3:1, suggesting that sex-related factors contribute to HS pathophysiology. In this article, we review the role of intrinsic and extrinsic factors that contribute to immunological differences between the sexes and postulate their role in the female sex bias observed in HS. We discuss the effects of hormones, X chromosome dosage, genetics, the microbiome, and smoking on sex-related differences in immunity to postulate potential immunological mechanisms in HS pathophysiology. Future studies are required to better characterize sex-biased factors that contribute to HS disease presentations.


Asunto(s)
Hidradenitis Supurativa , Masculino , Humanos , Femenino , Hidradenitis Supurativa/etiología , Sexismo , Citocinas , Células Th17 , Absceso
20.
Cancer Lett ; 561: 216149, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990268

RESUMEN

Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.


Asunto(s)
Neoplasias Hepáticas , Células T Asesinas Naturales , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Transición Epitelial-Mesenquimal , Análisis de Expresión Génica de una Sola Célula , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Citometría de Imagen , Activación de Linfocitos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...