RESUMEN
ABSTRACT: Chemotherapy-induced peripheral neuropathic pain aggravates cancer survivors' life burden. Electroacupuncture (EA) has exhibited promising analgesic effects on neuropathic pain in previous studies. We investigated whether EA was effective in a paclitaxel-induced neuropathic pain mouse model. We further explored the functional role of astrocytes in the rostral ventromedial medulla (RVM), a well-established pain modulation center, in the process of neuropathic pain as well as the analgesic effect of EA. We found that paclitaxel induced mechanical allodynia, astrocytic calcium signaling, and neuronal activation in the RVM and spinal cord, which could be suppressed by EA treatment. Electroacupuncture effectively alleviated paclitaxel-induced mechanical allodynia, and the effect was attenuated by the chemogenetic activation of astrocytes in the RVM. In addition, inhibiting astrocytic calcium activity by using either IP3R2 knockout (IP3R2 KO) mice or microinjection of AAV-mediated hPMCA2 w/b into the RVM to reduce non-IP3R2-dependent Ca2+ signaling in astrocytes exhibited an analgesic effect on neuropathic pain, which mimicked the EA effect. The current study revealed the pivotal role of the RVM astrocytes in mediating the analgesic effects of EA on chemotherapy-induced peripheral neuropathic pain.
RESUMEN
Chronic itch is a maladaptive and debilitating symptom in patients with allergic contact dermatitis (ACD), adversely affecting their quality of life. There is a lack of effective treatments for ACD-associated uncontrollable itch. In this study, we explored the antipruritic effects of baicalein (BE), a bioactive flavonoid extracted from the root of Scutellaria baicalensis Georgi, and the underlying mechanisms in alleviating chronic itch triggered by diphenylcyclopropenone (DCP) in a mouse model of ACD. The ACD mice were intraperitoneally injected with BE (5, 30, and 60 mg·kg-1·d-1) for 7 days during the DCP challenge phase. The results showed that DCP-treated mice exhibited severe spontaneous scratching behaviors that was reduced after BE injections in a dose-dependent manner accompanied by inhibition of spinal astrocyte activation. We observed that the spinal astrocytic STAT3-LCN2 cascade plays a crucial role in controlling the activation of astrocytes in chronic itch. Intrathecal injection of the STAT3 inhibitor AG490 or Lcn2 siRNA significantly reduced scratching behavior and astrocyte activation in ACD mice. Moreover, BE markedly attenuated the increased phosphorylation of STAT3 (p-STAT3) and LCN2 expression in the spinal cords of ACD mice and in lipopolysaccharide-stimulated primary spinal astrocytes. Altogether, BE relieved chronic itch by suppressing the spinal astrocytic STAT3-LCN2 cascade. These findings provide a potential avenue for the management of chronic itch. Schematic summary of the main findings illustrating that BE alleviates chronic itch through suppressing the spinal astrocytic STAT3-LCN2 cascade. Specifically, BE suppresses the expression of p-STAT3 to inhibit the reactive state of astrocytes in spinal dorsal horn, and then decreases the expression of astrocytic LCN2 to alleviate chronic itch in ACD mice.
RESUMEN
ABSTRACT: Cold allodynia is a common complaint of patients suffering from neuropathic pain initiated by peripheral nerve injury. However, the mechanisms that drive neuropathic cold pain remain elusive. In this study, we show that the interleukin (IL)-33/ST2 signaling in the dorsal root ganglion (DRG) is a critical contributor to neuropathic cold pain by interacting with the cold sensor transient receptor potential melastatin 8 (TRPM8). By using the St2-/- mice, we demonstrate that ST2 is required for the generation of nociceptor hyperexcitability and cold allodynia in a mouse model of spared nerve injury (SNI). Moreover, the selective elimination of ST2 function from the Nav1.8-expressing nociceptor markedly suppresses SNI-induced cold allodynia. Consistent with the loss-of-function studies, intraplantar injection of recombinant IL-33 (rIL-33) is sufficient to induce cold allodynia. Mechanistically, ST2 is co-expressed with TRPM8 in both mouse and human DRG neurons and rIL-33-induced Ca2+ influx in mouse DRG neurons through TRPM8. Co-immunoprecipitation assays further reveal that ST2 interacts with TRPM8 in DRG neurons. Importantly, rIL-33-induced cold allodynia is abolished by pharmacological inhibition of TRPM8 and genetic ablation of the TRPM8-expressing neurons. Thus, our findings suggest that the IL-33/ST2 signaling mediates neuropathic cold pain through downstream cold-sensitive TRPM8 channels, thereby identifying a potential analgesic target for the treatment of neuropathic cold pain.
RESUMEN
BACKGROUND: The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS: Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100ß, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS: Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION: The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.
Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Dolor , Sustancia Gris Periacueductal , Prurito , Animales , Astrocitos/patología , Astrocitos/metabolismo , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/patología , Prurito/patología , Prurito/fisiopatología , Masculino , Dolor/patología , Dolor/fisiopatología , Dolor/metabolismo , Ratones , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL , Hiperalgesia/patología , Hiperalgesia/fisiopatologíaRESUMEN
Itch, a common somatic sensation, serves as a crucial protective system. Recent studies have unraveled the neural mechanisms of itch at peripheral, spinal cord as well as cerebral levels. However, a comprehensive understanding of the central mechanism governing itch transmission and regulation remains elusive. Here, we report the role of the medial septum (MS), an integral component of the basal forebrain, in modulating the acute itch processing. The increases in c-Fos+ neurons and calcium signals within the MS during acute itch processing were observed. Pharmacogenetic activation manipulation of global MS neurons suppressed the scratching behaviors induced by chloroquine or compound 48/80. Microinjection of GABA into the MS or pharmacogenetic inhibition of non-GABAergic neurons markedly suppressed chloroquine-induced scratching behaviors. Pharmacogenetic activation of the MS-ACC GABAergic pathway attenuated chloroquine-induced acute itch. Hence, our findings reveal that MS has a regulatory role in the chloroquine-induced acute itch through local increased GABA to inhibit non-GABAergic neurons and the activation of MS-ACC GABAergic pathway.
Asunto(s)
Cloroquina , Giro del Cíngulo , Prurito , Ácido gamma-Aminobutírico , Cloroquina/farmacología , Animales , Prurito/inducido químicamente , Prurito/metabolismo , Prurito/tratamiento farmacológico , Masculino , Ácido gamma-Aminobutírico/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Núcleos Septales/metabolismo , Núcleos Septales/efectos de los fármacosRESUMEN
BACKGROUND: Exercise has been proven to be an efficient intervention in attenuating neuropathic pain. However, the underlying mechanisms that drive exercise analgesia remain unknown. In this study, we aimed to examine the role of complement component 3 (C3) in neuropathic pain and whether antinociceptive effects are produced by exercise via regulating C3 in mice. METHODS: In this study, using a spared nerve injury (SNI)-induced neuropathic pain mice model, C57BL/6J mice were divided into 3 groups: Sham mice, SNI mice, and SNI + Exercise (Ex) mice with 30-minute low-intensity aerobic treadmill running (10 m/min, no inclination). Paw withdrawal threshold; thermal withdrawal latency; and glial fibrillary acidic protein, C3, tumor necrosis factor-α, and interlukin-1ß expression in the spinal cord were monitored. C3 knockout (KO) mice were further used to verify the role of C3 in neuropathic pain. RESULTS: von Frey test, acetone test, and CatWalk gait analysis revealed that treadmill exercise for 4 weeks reversed pain behaviors. In addition, exercise reduced astrocyte reactivity (SNI mean = 14.5, 95% confidence interval [CI], 12.7-16.3; SNI + Ex mean = 10.3, 95% CI, 8.77-11.9, P = .0003 SNI + Ex versus SNI) and inflammatory responses in the spinal cord after SNI. Moreover, it suppressed the SNI-induced upregulation of C3 expression in the spinal cord (SNI mean = 5.46, 95% CI, 3.39-7.53; SNI + Ex mean = 2.41, 95% CI, 1.42-3.41, P = .0054 SNI + Ex versus SNI in Western blot). C3 deficiency reduced SNI-induced pain and spinal astrocyte reactivity (wild type mean = 7.96, 95% CI, 6.80-9.13; C3 KO mean = 5.98, 95% CI, 5.14-6.82, P = .0052 C3 KO versus wild type). Intrathecal injection of recombinant C3 (rC3) was sufficient to produce mechanical (rC3-Ex mean = 0.77, 95% CI, 0.15-1.39; rC3 mean = 0.18, 95% CI, -0.04 to 0.41, P = .0168 rC3-Ex versus rC3) and cold (rC3-Ex mean = 1.08, 95% CI, 0.40-1.77; rC3 mean = 3.46, 95% CI, 1.45-5.47, P = .0025 rC3-Ex versus rC3) allodynia in mice. Importantly, exercise training relieved C3-induced mechanical and cold allodynia, and the analgesic effect of exercise was attenuated by a subeffective dose of intrathecal injection of C3. CONCLUSIONS: Overall, these results suggest that exercise suppresses neuropathic pain by regulating astroglial C3 expression and function, thereby providing a rationale for the analgesic effect of exercise as an acceptable alternative approach for treating neuropathic pain.
Asunto(s)
Astrocitos , Complemento C3 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia , Condicionamiento Físico Animal , Animales , Neuralgia/metabolismo , Neuralgia/terapia , Neuralgia/fisiopatología , Astrocitos/metabolismo , Complemento C3/metabolismo , Complemento C3/genética , Ratones , Masculino , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Modelos Animales de Enfermedad , Umbral del Dolor , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Terapia por Ejercicio/métodosRESUMEN
Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.
Asunto(s)
Antineoplásicos , Electroacupuntura , MicroARNs , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Cisplatino/toxicidad , Microglía , Paclitaxel/efectos adversos , Antineoplásicos/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/prevención & control , Neuronas/metabolismo , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
Trigeminal Neuralgia (TN) is a debilitating disorder frequently accompanied by mood complications such as depression and anxiety. The current study sought to elucidate the molecular underpinnings that contribute to the pathogenesis of TN and its associated anxiety. Employing a partial transection of the infraorbital nerve (pT-ION) in a murine model, we successfully induced sustained primary and secondary orofacial allodynia alongside anxiety-like behavioral manifestations. Transcriptome-wide gene microarray analyses revealed a marked upregulation of Foxg1 subsequent to pT-ION. Targeted knockdown of Foxg1, achieved through bilateral microinjection of adeno-associated virus harboring Foxg1-specific shRNA into the lateral habenula (LHb), resulted in a significant attenuation of both orofacial pain and anxiety-like behaviors. Subsequent RNA sequencing implicated Prkcd as a downstream effector gene modulated by Foxg1. Pharmacological inhibition of protein kinase C delta, encoded by Prkcd, within the LHb markedly ameliorated pT-ION-induced symptomatology. The dual luciferase assay revealed that Foxg1 substantially enhances the transcriptional activity of the Prkcd gene. Collectively, these findings indicate that trigeminal nerve injury leads to Foxg1 upregulation in the LHb, which in turn elevates the expression of Prkcd, culminating in the manifestation of orofacial pain and anxiety-like behaviors. This work offers promising therapeutic targets and a conceptual framework for the clinical management of TN and its psychological comorbidities.
RESUMEN
Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.
Asunto(s)
Furocumarinas , Receptores de Bombesina , Animales , Ratones , Furocumarinas/farmacología , Furocumarinas/uso terapéutico , Péptido Liberador de Gastrina/farmacología , Péptido Liberador de Gastrina/fisiología , Ratones Endogámicos C57BL , Prurito/tratamiento farmacológico , Prurito/inducido químicamente , Receptores de Bombesina/metabolismo , Médula EspinalRESUMEN
Interleukin-33 (IL-33) is an inflammatory factor with an extensive range of biological effects and pleiotropic roles in diseases. Evidence suggests that IL-33 and its receptor ST2 play a pivotal role in chronic pain and itch at the level of primary sensory neurons, the spinal cord, and the brain. In this review, we outline an evolving understanding of the roles and mechanisms of IL-33 in chronic pathological pain, including inflammatory, neuropathic, and cancer, and chronic pruritus, such as allergic contact dermatitis, atopic dermatitis, and dry skin. Understanding the key roles of IL-33/ST2 signaling may provide exciting insights into the mechanisms of chronic pain and itch and lead to new clues for therapeutic approaches to the resolution of chronic pain and itch.
RESUMEN
BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Asunto(s)
Antipruriginosos , Calidad de Vida , Ratones , Animales , Antipruriginosos/efectos adversos , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Bicuculina/efectos adversos , Bicuculina/metabolismo , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Médula Espinal , Cloroquina/farmacología , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Epithelial regeneration is critical for barrier maintenance and organ function after intestinal radiation injury. Accumulating evidence indicates that the interleukin family members play critical roles in intestinal stem-cell-mediated epithelial regeneration. However, little is known about the relationship between interleukin 33 (IL-33)/ST2 axis and intestinal regeneration after radiation injury. We demonstrate here that IL-33 expression significantly increased after radiation treatment. Deficiency of IL-33/ST2 promotes intestinal epithelial regeneration, resulting in a reduction of mortality during radiation-induced intestine injury. Using ex vivo organoid cultures, we show that recombinant IL-33 promotes intestinal stem cell differentiation. Mechanistically, the effects of IL-33 were mediated by activation of transforming growth factor-ß signaling. Our findings reveal a fundamental mechanism by which IL-33 is able to regulate the intestinal crypt regeneration after tissue damage.
Asunto(s)
Interleucina-33 , Traumatismos por Radiación , Humanos , Interleucina-33/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Intestinos , Traumatismos por Radiación/terapia , Células Madre , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
IL-33, a member of the IL-1 family, acts as an alarmin in immune response. Epithelial-mesenchymal transition and transforming growth factor-ß (TGF-ß)induced fibroblast activation are key events in the development of renal interstitial fibrosis. The current study found increased expression of IL-33 and interleukin-1 receptor-like 1 (IL1RL1, alias ST2), the receptor for IL-33, in human fibrotic renal tissues. In addition, IL-33 or ST2-deficient mice showed significantly reduced levels of fibronectin, α-smooth muscle actin, and vimentin, and increased E-cadherin levels. In HK-2 cells, IL-33 promotes the phosphorylation of the TGF-ß receptor (TGF-ßR), Smad2, and Smad3, and the production of extracellular matrix (ECM), with reduced expression of E-cadherin. Blocking TGF-ßR signaling or suppressing ST2 expression impeded Smad2 and Smad3 phosphorylation, thereby reducing ECM production, suggesting that IL-33induced ECM synthesis requires cooperation between the two pathways. Mechanistically, IL-33 treatment induced a proximate interaction between ST2 and TGF-ßRs, activating downstream Smad2 and Smad3 for ECM production in renal epithelial cells. Collectively, this study identified a novel and essential role for IL-33 in promoting TGF-ß signaling and ECM production in the development of renal fibrosis. Therefore, targeting IL-33/ST2 signaling may be an effective therapeutic strategy for renal fibrosis.
Asunto(s)
Interleucina-33 , Enfermedades Renales , Ratones , Humanos , Animales , Interleucina-33/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/uso terapéutico , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Enfermedades Renales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína smad3/metabolismo , Fibrosis , Cadherinas/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Factores de Crecimiento Transformadores/uso terapéutico , Factor de Crecimiento Transformador beta1/metabolismo , Transición Epitelial-MesenquimalRESUMEN
The coexistence of chronic pain and anxiety is a common clinical phenomenon. Here, the role of tachykinin receptor 3 (NK3R) in the lateral habenula (LHb) in trigeminal neuralgia and in pain-associated anxiety was systematically investigated. First, electrophysiological recording showed that bilateral LHb neurons are hyperactive in a mouse model of trigeminal neuralgia made by partial transection of the infraorbital nerve (pT-ION). Chemicogenetic activation of bilateral LHb glutamatergic neurons in naive mice induced orofacial allodynia and anxiety-like behaviors, and pharmacological activation of NK3R in the LHb attenuated allodynia and anxiety-like behaviors induced by pT-ION. Electrophysiological recording showed that pharmacological activation of NK3R suppressed the abnormal excitation of LHb neurons. In parallel, pharmacological inhibition of NK3R induced orofacial allodynia and anxiety-like behavior in naive mice. The electrophysiological recording showed that pharmacological inhibition of NK3R activates LHb neurons. Neurokinin B (NKB) is an endogenous high-affinity ligand of NK3R, which binds NK3R and activates it to perform physiological functions, and further neuron projection tracing showed that the front section of the periaqueductal gray (fPAG) projects NKB-positive nerve fibers to the LHb. Optogenetics combined with electrophysiology recordings characterize the functional connections in this fPAG NKB â LHb pathway. In addition, electrophysiological recording showed that NKB-positive neurons in the fPAG were more active than NKB-negative neurons in pT-ION mice. Finally, inhibition of NKB release from the fPAG reversed the analgesic and anxiolytic effects of LHb Tacr3 overexpression in pT-ION mice, indicating that fPAG NKB â LHb regulates orofacial allodynia and pain-induced anxious behaviors. These findings for NK3R suggest the cellular mechanism behind pT-ION in the LHb and suggest that the fPAG NKB â LHb circuit is involved in pain and anxiety comorbidity. This previously unrecognized pathway might provide a potential approach for relieving the pain and anxiety associated with trigeminal neuralgia by targeting NK3R.
Asunto(s)
Ansiedad , Habénula , Dolor , Receptores de Taquicininas , Neuralgia del Trigémino , Animales , Ratones , Comorbilidad , Habénula/metabolismo , Hiperalgesia , Neuroquinina B/metabolismo , Receptores de Taquicininas/metabolismoRESUMEN
Toll like receptor 9 (TLR9) is a critical sensor for danger-associated molecular patterns (DAMPs) and a crucial marker of non-sterile/sterile inflammation among all TLRs. However, the significance of TLR9 in inflammatory pain remains unclear. Here, we subcutaneously injected Complete Freund's adjuvant (CFA) into the plantar surface of the hind paw, to established a mouse model of inflammatory pain, and we examined expression and distribution of TLR9 in this model. There was a significant increase of TLR9 mRNA and reduction of mechanical paw withdrawal threshold in mice intraplantar injected with CFA. By contrast, mechanical paw withdrawal threshold significantly increased in mice treated with TLR9 antagonist ODN2088. Furthermore, TLR9 is found predominantly distributed in the neurons by immunofluorescence experiment. Accordingly, neuronal TLR9 downregulation in the spinal cord prevented CFA-induced persistent hyperalgesia. Overall, these findings indicate that neuronal TLR9 in the spinal cord is closely related to CFA-induced inflammatory pain. It provides a potential treatment option for CFA-induced inflammatory pain by applying TLR9 antagonist.
RESUMEN
Microbial dysbiosis in the skin has been implicated in the pathogenesis of atopic dermatitis (AD); however, whether and how changes in the skin microbiome initiate skin inflammation, or vice versa, remains poorly understood. Here, we report that the levels of sebum and its microbial metabolite, propionate, were lower on the skin surface of AD patients compared with those of healthy individuals. Topical propionate application attenuated skin inflammation in mice with MC903-induced AD-like dermatitis by inhibiting IL-33 production in keratinocytes, an effect that was mediated through inhibition of HDAC and regulation of the AhR signaling pathway. Mice lacking sebum spontaneously developed AD-like dermatitis, which was improved by topical propionate application. A proof-of-concept clinical study further demonstrated the beneficial therapeutic effects of topical propionate application in AD patients. In summary, we have uncovered that the dysregulated sebum-microbial metabolite-IL-33 axis might play an initiating role in AD-related skin inflammation, thereby highlighting novel therapeutic strategies for the treatment of AD.
Asunto(s)
Dermatitis Atópica , Interleucina-33/biosíntesis , Animales , Dermatitis Atópica/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Interleucina-33/metabolismo , Queratinocitos/metabolismo , Ratones , Propionatos/metabolismo , Propionatos/farmacología , Propionatos/uso terapéutico , Sebo/metabolismo , Piel/patologíaRESUMEN
Peritendinous adhesion (PA) around tendons are daunting challenges for hand surgeons. Tenotomy with various sutures are considered classical tendon repair models (TRM) of tendon adhesion as well as tendon healing. However, potential biomimetic therapies such as anti-adhesion barriers and artificial tendon sheaths to avoid recurrence of PA are sometimes tested in these models without considering tendon healing. Thus, our aim is to create a simplified model without sutures in this study by using three 6 mm longitudinal and parallel incisions called the longitudinal incision model (LCM) in the murine flexor tendon. We found that the adhesion score of LCM has no significant difference to that in TRM. The range of motion (ROM) reveals similar adhesion formation in both TRM and LCM groups. Moreover, mRNA expression levels of collagen I and III in LCM shows no significant difference to that in TRM. The breaking force and stiffness of LCM were significantly higher than that of TRM. Therefore, LCM can imitate flexor tendon adhesion formation without sutures compared to TRM, without significant side effects on biomechanics with an easy operation.
RESUMEN
Lipoprotein disorder is a common feature of chronic pancreatitis (CP); however, the relationship between lipoprotein disorder and pancreatic fibrotic environment is unclear. Here, we investigated the occurrence and mechanism of pancreatic stellate cell (PSC) activation by lipoprotein metabolites and the subsequent regulation of type 2 immune responses, as well as the driving force of fibrotic aggressiveness in CP. Single-cell RNA sequencing revealed the heterogeneity of PSCs and identified very-low-density lipoprotein receptor (VLDLR)+ PSCs that were characterized by a higher lipid metabolism. VLDLR promoted intracellular lipid accumulation, followed by interleukin-33 (IL-33) expression and release in PSCs. PSC-derived IL-33 strongly induced pancreatic group 2 innate lymphoid cells (ILC2s) to trigger a type 2 immune response accompanied by the activation of PSCs, eventually leading to fibrosis during pancreatitis. Our findings indicate that VLDLR-enhanced lipoprotein metabolism in PSCs promotes pancreatic fibrosis and highlight a dominant role of IL-33 in this pro-fibrotic cascade.
Asunto(s)
Células Estrelladas Pancreáticas , Pancreatitis Crónica , Receptores de LDL/metabolismo , Células Cultivadas , Fibrosis , Humanos , Inmunidad Innata , Interleucina-33/metabolismo , Metabolismo de los Lípidos , Lipoproteínas VLDL/metabolismo , Linfocitos/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patologíaRESUMEN
Itch (pruritus) is a common cutaneous symptom widely associated with many skin complaints, and chronic itch can be a severe clinical problem. The onset and perpetuation of itch are linked to cytokines, such as interleukin (IL)-31, IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and tumor necrosis factor-alpha, and chemokines, such as chemokine (C-C motif) ligand 2 and C-X-C motif chemokine ligand 10. This review highlights research that has attempted to determine the attributes of various cytokines and chemokines concerning the development and modulation of itch. Through such research, clinical approaches targeting cytokines and/or chemokines may arise, which may further the development of itch therapeutics.
Asunto(s)
Quimiocinas , Citocinas , Humanos , Prurito/tratamiento farmacológico , Piel , Factor de Necrosis Tumoral alfaRESUMEN
BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.