Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 261: 155504, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116570

RESUMEN

OBJECTIVE: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits an aggressive phenotype and poor prognosis. The application of neoadjuvant therapy (NAT) in patients with breast cancer can significantly reduce the risks of disease recurrence and improve survival. By integrating different clinicopathological factors, nomograms are valuable tools for prognosis prediction. This study aimed to assess the prognostic value of clinicopathological factors in patients with HER2-positive breast cancer and construct a nomogram for outcome prediction. METHODS: We retrospectively analyzed the clinicopathological data from 374 patients with breast cancer admitted to the Fourth Hospital of Hebei Medical University between January 2009 and December 2017, who were diagnosed with invasive breast cancer through preoperative core needle biopsy pathology, underwent surgical resection after NAT, and were HER2-positive. Patients were randomly divided into a training and validation set at a ratio of 7:3. Univariate and multivariate survival analyses were performed using Kaplan-Meier and Cox proportional hazards regression models. Results of the multivariate analysis were used to create nomograms predicting 3-, 5-, and 8-year overall survival (OS) rates. Calibration curves were plotted to test concordance between the predicted and actual risks. Harrell C-index and time-dependent receiver operating characteristic (ROC) curves were used to evaluate the discriminability of the nomogram prediction model. RESULTS: All included patients were women, with a mean age of 50 ± 10.4 years (range: 26-72 years). In the training set, both univariate and multivariate analyses identified residual cancer burden (RCB) class, tumor-infiltrating lymphocytes(TILs), and clinical stage as independent prognostic factors for OS, and these factors were combined to construct a nomogram. The calibration curves demonstrated good concordance between the predicted and actual risks, and the C-index of the nomogram was 0.882 (95 % CI 0.863-0.901). The 3-, 5-, and 8-year areas under the ROC curve (AUCs) were 0.909, 0.893, and 0.918, respectively, indicating good accuracy of the nomogram. The calibration curves also demonstrated good concordance in the validation set, with a C-index of 0.850 (95 % CI 0.804-0.896) and 3-, 5-, and 8-year AUCs of 0.909, 0.815, and 0.834, respectively, which also indicated good accuracy. CONCLUSION: The nomogram prediction model accurately predicted the prognostic status of post-NAT patients with breast cancer and was more accurate than clinical stage and RCB class. Therefore, it can serve as a reliable guide for selecting clinical treatment measures for breast cancer.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Nomogramas , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análisis , Adulto , Pronóstico , Estudios Retrospectivos , Anciano , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo
2.
Pathol Res Pract ; 260: 155472, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39053133

RESUMEN

Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92-0.99] and 0.92 [0.80-0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50-0.92] and 0.98 [0.93-0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98-1.00] and specificity of 0.99 [0.97-1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.


Asunto(s)
Inteligencia Artificial , Biomarcadores de Tumor , Neoplasias de la Mama , Inmunohistoquímica , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/análisis , Receptor ErbB-2/metabolismo , Inmunohistoquímica/métodos , Femenino , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Reproducibilidad de los Resultados , Algoritmos
3.
Transl Cancer Res ; 13(5): 2208-2221, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881919

RESUMEN

Background: Most of its issues are still undecided on the relationship between tumour mutation burden (TMB) and immune-related genes in the breast cancer. This study explores their relationship based on gene mutation and transcription data in The Cancer Genome Atlas (TCGA) database, and the effects of immune cells in TMB and tumour microenvironments on prognosis of breast cancer patients. Methods: Cases were divided into low-TMB and high-TMB subgroups. Differentially expressed immune-related genes were identified in different TMB subgroups, and patient prognosis was predicted by gene function enrichment analysis, invasive immune cells and different clinical pathological features were compared among different TMB subgroups. Results: A total of 986 mutation data from breast cancer patients were obtained. Compared with low-TMB group, the survival period of high-TMB group was relatively longer. A total of 337 differential expression genes were identified in this study. Of these genes, seven differentially expressed immune-related genes were associated with prognosis. In the high-TMB group, activated CD4+ memory T cells and other cells had high expression, the expression ratio of memory B cells and other cells in low-TMB group was high. Conclusions: TMB-related immunological infiltration characteristics showed meaningful value for prognosis prediction for breast cancer patients. Differentially expressed immune-related genes in TMB subgroups provide important information on the survival prediction.

4.
Histopathology ; 85(3): 451-467, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747491

RESUMEN

BACKGROUND AND AIMS: Evaluation of the programmed cell death ligand-1 (PD-L1) combined positive score (CPS) is vital to predict the efficacy of the immunotherapy in triple-negative breast cancer (TNBC), but pathologists show substantial variability in the consistency and accuracy of the interpretation. It is of great importance to establish an objective and effective method which is highly repeatable. METHODS: We proposed a model in a deep learning-based framework, which at the patch level incorporated cell analysis and tissue region analysis, followed by the whole-slide level fusion of patch results. Three rounds of ring studies (RSs) were conducted. Twenty-one pathologists of different levels from four institutions evaluated the PD-L1 CPS in TNBC specimens as continuous scores by visual assessment and our artificial intelligence (AI)-assisted method. RESULTS: In the visual assessment, the interpretation results of PD-L1 (Dako 22C3) CPS by different levels of pathologists have significant differences and showed weak consistency. Using AI-assisted interpretation, there were no significant differences between all pathologists (P = 0.43), and the intraclass correlation coefficient (ICC) value was increased from 0.618 [95% confidence interval (CI) = 0.524-0.719] to 0.931 (95% CI = 0.902-0.955). The accuracy of interpretation result is further improved to 0.919 (95% CI = 0.886-0.947). Acceptance of AI results by junior pathologists was the highest among all levels, and 80% of the AI results were accepted overall. CONCLUSION: With the help of the AI-assisted diagnostic method, different levels of pathologists achieved excellent consistency and repeatability in the interpretation of PD-L1 (Dako 22C3) CPS. Our AI-assisted diagnostic approach was proved to strengthen the consistency and repeatability in clinical practice.


Asunto(s)
Inteligencia Artificial , Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/patología , Antígeno B7-H1/análisis , Antígeno B7-H1/metabolismo , Femenino , Biomarcadores de Tumor/análisis , Aprendizaje Profundo , Inmunohistoquímica/métodos , Interpretación de Imagen Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...