Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(22): 14403-14413, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775684

RESUMEN

The highly reversible plating/stripping of Zn is plagued by dendrite growth and side reactions on metallic Zn anodes, retarding the commercial application of aqueous Zn-ion batteries. Herein, a distinctive nano dual-phase diamond (NDPD) comprised of an amorphous-crystalline heterostructure is developed to regulate Zn deposition and mechanically block dendrite growth. The rich amorphous-crystalline heterointerfaces in the NDPD endow modified Zn anodes with enhanced Zn affinity and result in homogeneous nucleation. In addition, the unparalleled hardness of the NDPD effectively overcomes the high growth stress of dendrites and mechanically impedes their proliferation. Moreover, the hydrophobic surfaces of the NDPD facilitate the desolvation of hydrate Zn2+ and prevent water-mediated side reactions. Consequently, the Zn@NDPD presents an ultrastable lifespan exceeding 3200 h at 5 mA cm-2 and 1 mAh cm-2. The practical application potential of Zn@NDPD is further demonstrated in full cells. This work exhibits the great significance of a chemical-mechanical synergistic anode modification strategy in constructing high-performance aqueous Zn-ion batteries.

2.
Small ; : e2401742, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721985

RESUMEN

There is a growing demand for thermal management materials in electronic fields. Aerogels have attracted interest due to their extremely low density and extraordinary thermal insulation properties. However, the application of aerogels is limited by high production costs and the requirement that aerogel structures not be load-bearing. In this study, mullite-reinforced SiC-based aerogel composite (MR-SiC AC) is prepared through 3D printing combined with in situ growth of SiC nanowires in post processing. The fabricated MR-SiC AC not only has ultra-low thermal conductivity (0.021 W K m-1) and high porosity (90.0%), but also a high Young's modulus (24.4 MPa) and high compressive strength (1.65 MPa), both exceeding the measurements of existing resilient aerogels by an order of magnitude. These properties make MR-SiC AC an ideal solution for the precision thermal management of lightweight structures having complex geometry for functional devices.

3.
Nat Commun ; 15(1): 3871, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719862

RESUMEN

Temperature is one of the seven fundamental physical quantities. The ability to measure temperatures approaching absolute zero has driven numerous advances in low-temperature physics and quantum physics. Currently, millikelvin temperatures and below are measured through the characterization of a certain thermal state of the system as there is no traditional thermometer capable of measuring temperatures at such low levels. In this study, we develop a kind of diamond with sp2-sp3 composite phase to tackle this problem. The synthesized composite phase diamond (CPD) exhibits a negative temperature coefficient, providing an excellent fit across a broad temperature range, and reaching a temperature measurement limit of 1 mK. Additionally, the CPD demonstrates low magnetic field sensitivity and excellent thermal stability, and can be fabricated into probes down to 1 micron in diameter, making it a promising candidate for the manufacture of next-generation cryogenic temperature sensors. This development is significant for the low-temperature physics researches, and can help facilitate the transition of quantum computing, quantum simulation, and other related technologies from research to practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA