Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1387401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860223

RESUMEN

Background: Intestinal microbiota have been demonstrated to be involved in the development of NAFLD, while the relationship between the severity of NAFLD and intestinal microbiota is still not fully elucidated. Sheng-Jiang Powder (SJP) showed exact efficacy in treating SFL and great potential in regulating intestinal microbiota, but the effects need to be further addressed in NASH and liver fibrosis. Objectives: To investigate the differences in intestinal microbiota of NAFLD with different severity and the effect of SJP on liver damage and intestinal microbiota. Design: NAFLD mice models with different severity were induced by high-fat diet (HFD) or choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) feeding and then treated with SJP/normal saline. Methods: Biochemical blood tests, H&E/Masson/Oil Red O/IHC staining, Western blot, and 16SrDNA sequencing were performed to explore intestinal microbiota alteration in different NAFLD models and the effect of SJP on liver damage and intestinal microbiota. Results: Intestinal microbiota alteration was detected in all NAFLD mice. SJP induced increased expression of Pparγ and alleviated liver lipid deposition in all NAFLD mice. Microbiome analysis revealed obvious changes in intestinal microbiota composition, while SJP significantly elevated the relative abundance of Roseburia and Akkermansia, which were demonstrated to be beneficial for improving inflammation and intestinal barrier function. Conclusion: Our results demonstrated that SJP was effective in improving lipid metabolism in NAFLD mice, especially in mice with SFL. The potential mechanism may be associated with the regulation of intestinal microbiota.

2.
Sci Total Environ ; 935: 173386, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777047

RESUMEN

PURPOSE: To examine the association between ambient air pollution and dry eye symptoms (DES) during the COVID-19 pandemic and explore whether air pollution had increased the risk of DES to a greater extent than other risk factors. METHODS: A nationwide cross-sectional survey was conducted from June 20, 2022 to August 31, 2022. The Ocular Surface Disease Index-6 (OSDI-6) questionnaire was used to assess the presence of DES. Logistic regression models were employed to analyze the associations between DES and air pollution variables, including air quality index (AQI), fine particulate matter (PM2.5), PM10, sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3) and residing near industrial zones. We explored the interactions of air pollutants and other risk factors in the additive models by calculating the synergy index (SI). Standardized regression coefficients were calculated to compare the relative importance of risk factors for DES. RESULTS: A total of 21,909 participants were included in the analysis. Residing near industrial zones was significantly correlated with a higher risk of DES (Odds ratio (OR): 1.57, 95 % confidence interval (CI): 1.38-1.79). No significant associations were found between DES and air pollutants except SO2 (OR: 1.05, 95 % CI: 1.02-1.09, per standard deviation increment in SO2 concentration). The restricted cubic spline analyses revealed a linear concentration-response relationship between SO2 and DES. The interaction analyses suggested synergetic interactions of SO2 with depression and problematic internet use. Among the risk factors, depression, anxiety and problematic Internet use contributed more to the increased risk of DES. CONCLUSION: The association between ambient air pollutants and DES may have been mitigated during the pandemic due to increased time spent indoors. Despite this, our findings support the deleterious health impact of air pollutants. Future urban planning should plan industrial zones further away from residential areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Síndromes de Ojo Seco , Material Particulado , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , China/epidemiología , COVID-19/epidemiología , Estudios Transversales , Síndromes de Ojo Seco/epidemiología , Síndromes de Ojo Seco/inducido químicamente , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/estadística & datos numéricos , Pandemias , Material Particulado/análisis , Factores de Riesgo , Dióxido de Azufre/análisis
3.
Asian J Pharm Sci ; 19(2): 100908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623486

RESUMEN

The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.

4.
Front Pharmacol ; 15: 1373663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545549

RESUMEN

Introduction: The objective of this study is to systematically evaluate the effect of ligustrazine on animal models of ischemic stroke and investigate its mechanism of action. Materials and Methods: The intervention of ligustrazine in ischemic diseases research on stroke model animals was searched in the Chinese National Knowledge Infrastructure (CNKI), Wanfang Database (Wanfang), VIP Database (VIP), Chinese Biomedical Literature Database (CBM), Cochrane Library, PubMed, Web of Science, and Embase databases. The quality of the included literature was evaluated using the Cochrane risk of bias tool. The evaluation included measures such as neurological deficit score (NDS), percentage of cerebral infarction volume, brain water content, inflammation-related factors, oxidative stress-related indicators, apoptosis indicators (caspase-3), and blood-brain barrier (BBB) permeability (Claudin-5). Results: A total of 32 studies were included in the analysis. The results indicated that ligustrazine significantly improved the neurological function scores of ischemic stroke animals compared to the control group (SMD = -1.84, 95% CI -2.14 to -1.55, P < 0.00001). It also reduced the percentage of cerebral infarction (SMD = -2.97, 95% CI -3.58 to -2.36, P < 0.00001) and brain water content (SMD = -2.37, 95% CI -3.63 to -1.12, P = 0.0002). In addition, ligustrazine can significantly improve various inflammatory factors such as TNF-α (SMD = -7.53, 95% CI -11.34 to -3.72, P = 0.0001), IL-1ß (SMD = -2.65, 95% CI -3.87 to -1.44, P < 0.0001), and IL-6 (SMD = -5.55, 95% CI -9.32 to -1.78, P = 0.004). It also positively affects oxidative stress-related indicators including SOD (SMD = 4.60, 95% CI 2.10 to 7.10, P = 0.0003), NOS (SMD = -1.52, 95% CI -2.98 to -0.06, P = 0.04), MDA (SMD = -5.31, 95% CI -8.48 to -2.14, P = 0.001), and NO (SMD = -5.33, 95% CI -8.82 to -1.84, P = 0.003). Furthermore, it shows positive effects on the apoptosis indicator caspase-3 (SMD = -5.21, 95% CI -7.47 to -2.94, P < 0.00001) and the expression level of the sex-related protein Claudin-5, which influences BBB permeability (SMD = 7.38, 95% CI 3.95 to 10.82, P < 0.0001). Conclusion: Ligustrazine has been shown to have a protective effect in animal models of cerebral ischemic injury. Its mechanism of action is believed to be associated with the reduction of inflammation and oxidative stress, the inhibition of apoptosis, and the repair of BBB permeability. However, further high-quality animal experiments are required to validate these findings.

5.
Small ; 20(21): e2307758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100187

RESUMEN

Metal halide nanocrystals (MHNCs) embedded in a polymer matrix as flexible X-ray detector screens is an effective strategy with the advantages of low cost, facile preparation, and large area flexibility. However, MHNCs easily aggregate during preparation, recombination, under mechanical force, storage, or high operating temperature. Meanwhile, it shows an unmatched refractive index with polymer, resulting in low light yield. The related stability and properties of the device remain a huge unrevealed challenge. Herein, a composite screen (CZBM@AG-PS) by integrating MHNCs (Cs2ZnBr4: Mn2+ as an example) into silica aerogel (AG) and embedded in polystyrene (PS) is successfully developed. Further characterization points to the high porosity AG template that can effectively improve the dispersion of MHNCs in polymer detector screens, essentially decreasing nonradiative transition, Rayleigh scattering, and performance aging induced by aggregation in harsh environments. Furthermore, the higher light output and lower optical crosstalk are also achieved by a novel light propagation path based on the MHNCs/AG and AG/PS interfaces. Finally, the optimized CZBM@AG-PS screen shows much enhanced light yield, spatial resolution, and temperature stability. Significantly, the strategy is proven universal by the performance tests of other MHNCs embedded composite films for ultra-stable and efficient X-ray imaging.

6.
IEEE J Biomed Health Inform ; 27(12): 5767-5778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713231

RESUMEN

Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches.


Asunto(s)
Algoritmos , Emociones , Humanos , Programas Informáticos , Redes Neurales de la Computación , Electroencefalografía/métodos
7.
J Affect Disord ; 340: 290-298, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567346

RESUMEN

BACKGROUND: Many studies have shown that having noncommunicable chronic diseases (NCDs) is strongly associated with depressive symptoms in elderly people; however, the mechanisms of this association are not fully understood. This study aims to investigate whether perceived social support (PSS) mediates the effect of NCDs on depressive symptoms and whether these relationships differ depending on where middle-aged and elderly people live. METHODS: The study population was from the psychology and behavior investigation of Chinese residents (PBICR). A total of 8732 people aged 45 and older were included in the hypothetical modulated model. Perceived Social Support Scale (PSSS) and Patient Health Questionnaire-9 (PHQ-9) were used to evaluate PSS and depressive symptoms. RESULTS: NCDs were positively related to depressive symptoms (ß = 0.81, p < 0.01) and indirectly mediated through PSS (ß = 0.08). Residency moderated the relationship between NCDs and PSS (ß = -0.16, p < 0.01) and between NCDs and depressive symptoms (ß = 0.29, p < 0.01). Specifically, the effect of NCDs on PSS and depressive symptoms was greater in rural middle-aged and older adults. CONCLUSIONS: NCDs raise the risk of depressive symptoms in middle-aged and older Chinese, with PSS playing a partially protective role. In addition, the area of residence moderated the connection between the number of NCDs and PSS, NCDs, and depressive symptoms in middle-aged and older adults.


Asunto(s)
Depresión , Pueblos del Este de Asia , Características de la Residencia , Apoyo Social , Anciano , Humanos , Persona de Mediana Edad , China/epidemiología , Enfermedad Crónica , Depresión/epidemiología
8.
J Affect Disord ; 333: 1-9, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37075821

RESUMEN

BACKGROUND: Previous studies have reported that the prevalence of depression and depressive symptoms was significantly higher than that before the COVID-19 pandemic. This study aimed to explore the prevalence of depressive symptoms and evaluate the importance of influencing factors through Back Propagation Neural Network (BPNN). METHODS: Data were sourced from the psychology and behavior investigation of Chinese residents (PBICR). A total of 21,916 individuals in China were included in the current study. Multiple logistic regression was applied to preliminarily identify potential risk factors for depressive symptoms. BPNN was used to explore the order of contributing factors of depressive symptoms. RESULTS: The prevalence of depressive symptoms among the general population during the COVID-19 pandemic was 57.57 %. The top five important variables were determined based on the BPNN rank of importance: subjective sleep quality (100.00 %), loneliness (77.30 %), subjective well-being (67.90 %), stress (65.00 %), problematic internet use (51.20 %). CONCLUSIONS: The prevalence of depressive symptoms in the general population was high during the COVID-19 pandemic. The BPNN model established has significant preventive and clinical meaning to identify depressive symptoms lay theoretical foundation for individualized and targeted psychological intervention in the future.


Asunto(s)
COVID-19 , Depresión , Redes Neurales de la Computación , Pandemias , COVID-19/epidemiología , Depresión/epidemiología , Depresión/psicología , Prevalencia , China/epidemiología , Calidad del Sueño , Soledad , Uso de Internet/estadística & datos numéricos , Estrés Psicológico/epidemiología , Modelos Logísticos , Factores de Riesgo , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad
9.
Biochem Pharmacol ; 212: 115527, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004779

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is a dimeric protein that belongs to the histidine triad protein superfamily, predominantly expressed in the liver, pancreas, and adrenal gland, and localised to the mitochondrion. HINT2 binds nucleotides and catalyses the hydrolysis of nucleotidyl substrates. Moreover, HINT2 has been identified as a key regulator of multiple biological processes, including mitochondria-dependent apoptosis, mitochondrial protein acetylation, and steroidogenesis. Genetic manipulation has provided new insights into the physiological roles of HINT2 in several processes, such as inhibition of cancer progression, regulation of hepatic lipid metabolism, and protective effects on the cardiovascular system. The current review outlines the background and functions of HINT2. In addition, it summarises research progress on the correlation between HINT2 and human malignancies, hepatic metabolic diseases, and cardiovascular diseases, with an attempt to provide new research directions emerging in this field and to unveil the therapeutic value of HINT2 as a target in the combat of human diseases.


Asunto(s)
Histidina , Hígado , Humanos , Histidina/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nucleótidos/metabolismo
10.
Adv Healthc Mater ; 12(19): e2203118, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929289

RESUMEN

Owing to the serious clinical side effects of intravenous Taxol, an oral chemotherapeutic strategy is expected to be promising for paclitaxel (PTX) delivery. However, its poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity need to be overcome. A triglyceride (TG)-like prodrug strategy facilitates oral drug delivery by bypassing liver metabolism. However, the effect of fatty acids (FAs) in sn-1,3 on the oral absorption of prodrugs remains unclear. Herein, a series of TG-mimetic prodrugs of PTX is explored with different carbon chain lengths and degrees of unsaturation of FAs at the sn-1,3 position in an attempt to enhance oral antitumor effect and to guide the design of TG-like prodrugs. Interestingly, the different FA lengths exhibit great influence on in vitro intestinal digestion behavior, lymph transport efficiency, and up to fourfold differences in plasma pharmacokinetics. The prodrug with long-chain FAs shows a more effective antitumor effect, whereas the degree of unsaturation has a negligible impact. The findings illustrate how FAs structures affect the oral delivery efficiency of TG-like PTX prodrugs and thus provide a theoretical basis for their rational design.


Asunto(s)
Profármacos , Profármacos/química , Paclitaxel/química , Ácidos Grasos , Sistemas de Liberación de Medicamentos , Triglicéridos
11.
Mol Pharm ; 20(1): 461-472, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36525349

RESUMEN

The oral absorption of paclitaxel (PTX) is restricted by poor solubility in the gastrointestinal tract (GIT), low permeability, and high first-pass metabolism. Lipid carriers, such as a self-microemulsifying drug delivery system (SMEDDS), have been deemed as promising vehicles for promoting oral delivery of PTX. Herein, a lipophilic disulfide-bridged linoleic prodrug (PTX-S-S-LA) was synthesized and efficiently incorporated into SMEDDS to facilitate the oral absorption of PTX. This study mainly aims to evaluate the usefulness of the disulfide-bridged linoleic prodrug incorporated with SMEDDS and provides a new strategy for efficient oral delivery of PTX. The prodrug SMEDDS showed a markedly higher drug loading efficiency (3-fold) compared to that of parent PTX. PTX-S-S-LA SMEDDS significantly increased the drug partition (about 1.9-fold) in the intestinal micellar aqueous phase compared to PTX in the in vitro lipolysis study. Additionally, the gastrointestinal (GI) biodistribution study demonstrated that SMEDDS could enhance the GI biological adhesion and go through the lymphatic system to transport. Moreover, it was found that the reduction-sensitive prodrug (PTX-S-S-LA) has good stability in the GIT, leading to an improved antitumor efficiency without significant GI toxicity. Overall, the PTX-linoleic prodrug (PTX-S-S-LA) in combination with SMEDDS provides a promising way to enable effective oral delivery of PTX.


Asunto(s)
Profármacos , Paclitaxel , Disulfuros , Distribución Tisular , Emulsiones , Sistemas de Liberación de Medicamentos , Solubilidad , Disponibilidad Biológica , Administración Oral
12.
Nat Commun ; 13(1): 6512, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316316

RESUMEN

Enhancing pancreatic ß-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries. Depletion of Stx2 in human ß-cells improves insulin secretion by enhancing trans-SNARE complex assembly and cis-SNARE disassembly. Using a genetically-encoded reporter, glucose stimulation is shown to induce Stx2 flipping across the plasma membrane, which relieves its suppression of cytoplasmic fusogenic SNARE complexes to promote insulin secretion. Targeting the flipping efficiency of Stx2 profoundly modulates secretion, which could restore the impaired insulin secretion in diabetes. Here, we show that Stx2 acts to assist this precise tuning of insulin secretion in ß-cells, including in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Sintaxina 1/genética , Sintaxina 1/metabolismo , Insulina/metabolismo , Exocitosis/fisiología , Proteínas SNARE/metabolismo , Membrana Celular/metabolismo
13.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806189

RESUMEN

Knowing the molecular mechanism of male sterility in alfalfa is important to utilize the heterosis more effectively. However, the molecular mechanisms of male sterility in alfalfa are still unclear. In this study, the bulked segregant analysis (BSA) and bulked segregant RNA-seq (BSR) were performed with F2 separation progeny to study the molecular mechanism of male sterility in alfalfa. The BSA-seq analysis was located in a candidate region on chromosome 5 containing 626 candidate genes which were associated with male sterility in alfalfa, while the BSR-seq analysis filtered seven candidate DEGs related to male sterility, and these candidate genes including EF-Tu, ß-GAL, CESA, PHGDH, and JMT. The conjunctive analyses of BSR and BSA methods revealed that the genes of Msß-GAL and MsJMT are the common detected candidate genes involved in male sterility in alfalfa. Our research provides a theory basis for further study of the molecular mechanism of male sterility in alfalfa and significant information for the genetic breeding of Medicago sativa.


Asunto(s)
Infertilidad Masculina , Medicago sativa , Humanos , Masculino , Medicago sativa/genética , Fitomejoramiento , Infertilidad Vegetal/genética , RNA-Seq
14.
Front Pharmacol ; 13: 922130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899121

RESUMEN

Dao-Chi powder (DCP) has been widely used in the treatment of inflammatory diseases in the clinical practice of traditional Chinese medicine, but has not been used in acute pancreatitis (AP). This study aimed to evaluate the effect of DCP on severe AP (SAP) and SAP-associated intestinal and cardiac injuries. To this end, an SAP animal model was established by retrograde injection of 3.5% taurocholic acid sodium salt into the biliopancreatic ducts of rats. Intragastric DCP (9.6 g/kg.BW) was administered 12 h after modeling. The pancreas, duodenum, colon, heart and blood samples were collected 36 h after the operation for histological and biochemical detection. The tissue distributions of the DCP components were determined and compared between the sham and the SAP groups. Moreover, molecular docking analysis was employed to investigate the interactions between the potential active components of DCP and its targets (Nrf2, HO-1, and HMGB1). Consequently, DCP treatment decreased the serum levels of amylase and the markers of gastrointestinal and cardiac injury, further alleviating the pathological damage in the pancreas, duodenum, colon, and heart of rats with SAP. Mechanistically, DCP rebalanced the pro-/anti-inflammatory cytokines and inhibited MPO activity and MDA levels in these tissues. Furthermore, Western blot and RT-PCR results showed that DCP intervention enhanced the expression of Nrf2 and HO-1 in the duodenum and colon of rats with SAP, while inhibiting the expression of HMGB1 in the duodenum and heart. HPLC-MS/MS analysis revealed that SAP promoted the distribution of ajugol and oleanolic acid to the duodenum, whereas it inhibited the distribution of liquiritigenin to the heart and ajugol to the colon. Molecular docking analysis confirmed that the six screened components of DCP had relatively good binding affinity with Nrf2, HO-1, and HMGB1. Among these, oleanolic acid had the highest affinity for HO-1. Altogether, DCP could alleviated SAP-induced intestinal and cardiac injuries via inhibiting the inflammatory responses and oxidative stress partially through regulating the Nrf2/HO-1/HMGB1 signaling pathway, thereby providing additional supportive evidence for the clinical treatment of SAP.

15.
Eur J Pharm Biopharm ; 176: 122-132, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643367

RESUMEN

Oral administration of chemotherapy agents, such as docetaxel (DTX), is expected to reduce side effects significantly and increase dosing frequency. However, they often suffer from poor oral bioavailability, impeding their oral application. Dietary lipids such as triglycerides favor lymphatic transport nor vein system, bypassing the first-pass metabolism. Inspired by this concept, we developed a triglyceride-like prodrug of DTX (named as OATG) and explored the effect of lipid types on the OATG oral delivery. The plasma profile in rats revealed that long chain triglyceride (LCT)-based lipid formulations (LBLF) were more promising for OATG delivery than medium chain triglyceride (MCT) ones. The OATG LBLF elicited a markedly enhanced absorption compared with oral Taxotere or DTX LBLF, resulting in relative bioavailability 6.11 or 2.47-fold higher, respectively. The coincident intestinal behaviors of lipid excipients and TG-like prodrug facilitate the oral absorption of the prodrug. The effectiveness of the prodrug formulation was also examined in beagles with absolute bioavailability up to 41.08%, in sharp contrast to that of control DTX group (8%). Besides, the OATG oral formulation could be schedule-intensively administrated with no hypersensitivity, gastrointestinal and hematological toxicity. The current strategy provides an effective lipid formulation and a promising chance for chemotherapy at home.


Asunto(s)
Profármacos , Administración Oral , Animales , Disponibilidad Biológica , Docetaxel/farmacología , Perros , Absorción Intestinal , Intestinos , Ratas , Triglicéridos/metabolismo
16.
Front Pharmacol ; 13: 873053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721108

RESUMEN

Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.

17.
Artículo en Inglés | MEDLINE | ID: mdl-35586694

RESUMEN

Objective: To explore the effect and underlying mechanism of Zengye decoction (ZYD), a traditional formula from China, on the severe acute pancreatitis (SAP) rat model with acute kidney injury (AKI). Methods: The SAP-AKI model was induced by 3.5% sodium taurocholate. Rats were treated with normal saline or ZYD twice and sacrificed at 36 h after modeling. Amylase, lipase, creatinine, blood urea nitrogen, kidney injury molecule 1(KIM-1), and multiple organs' pathological examinations were used to assess the protective effect of ZYD. Gut microbiome detected by 16S rRNA sequencing analysis and serum amino acid metabolome analyzed by liquid chromatography-mass spectrometry explained the underlying mechanism. The Spearman correlation analysis presented the relationship between microflora and metabolites. Results: ZYD significantly decreased KIM-1(P < 0.05) and the pathological score of the pancreas (P < 0.05), colon (P < 0.05), and kidney (P < 0.05). Meanwhile, ZYD shifted the overall gut microbial structure (ß-diversity, ANOSIM R = 0.14, P=0.025) and altered the microbial compositions. Notably, ZYD reduced the potentially pathogenic bacteria-Bacteroidetes, Clostridiales vadin BB60 group, and uncultured_Clostridiales_bacterium, but promoted the short-chain fatty acid (SCFA) producers-Erysipelotrichaceae, Bifidobacterium, Lactobacillus, and Moryella (all P < 0.05). Moreover, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA) presented a remarkable change in amino acid metabolome after SAP-AKI induction and an apparent regulation by ZYD treatment (R2Y 0.878, P=0.01; Q2 0.531, P=0.01). Spearman's correlation analysis suggested that gut bacteria likely influenced serum metabolites levels (absolute r > 0.4 and FDR P < 0.02). Conclusions: ZYD attenuated SAP-AKI by modulating the gut microbiome and serum amino acid metabolome, which may be a promising adjuvant treatment.

18.
J Med Chem ; 64(21): 15936-15948, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723524

RESUMEN

Off-target drug release and insufficient drug delivery are the main obstacles for effective anticancer chemotherapy. Prodrug-based self-assembled nanoparticles bioactivated under tumor-specific conditions are one of the effective strategies to achieve on-demand drug release and effective tumor accumulation. Herein, stimuli-activable prodrugs are designed yielding smart tumor delivery by combination of the triglyceride-mimic (TG-mimetic) prodrug structure and disulfide bond. Surprisingly, these prodrugs can self-assemble into uniform nanoparticles (NPs) with a high drug loading (over 40%) and accumulate in tumor sites specifically. The super hydrophobic TG structure can act as a gate that senses lipase to selectively control over NP dissociation and affect the glutathione-triggered prodrug activation. In addition, the impacts of the double bonds in the prodrug NPs on parent drug release and the following cytotoxicity, pharmacokinetics, and antitumor efficiency are further demonstrated. Our findings highlight the promising potential of TG-mimetic structure-gated prodrug nanoparticles for tumor-specific drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Imitación Molecular , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Profármacos/química , Triglicéridos/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos , Liberación de Fármacos , Sinergismo Farmacológico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Nanopartículas/uso terapéutico , Profármacos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Autophagy ; 17(10): 3068-3081, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33213278

RESUMEN

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKß-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKß inhibitors, and confirmed by the inability of IKBKB/IKKß phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKß's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.Abbreviations: AL: autolysosome; AP: acute pancreatitis; AV: autophagic vacuole; CCK: cholecystokinin; IKBKB/IKKß: inhibitor of nuclear factor kappa B kinase subunit beta; SNAP23: synaptosome associated protein 23; SNARE: soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; STX: syntaxin; TAP: trypsinogen activation peptide; VAMP: vesicle associated membrane protein; ZG: zymogen granule.


Asunto(s)
Pancreatitis , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Enfermedad Aguda , Animales , Autofagia , Exocitosis , Humanos , Lisosomas , Páncreas , Pancreatitis/genética , Pancreatitis/prevención & control , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratas , Tripsina/farmacología , Proteínas de Transporte Vesicular
20.
Artículo en Inglés | MEDLINE | ID: mdl-33293992

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is an alarming global health problem that is predicted to be the major cause of cirrhosis, hepatocellular carcinoma, and liver transplantation by next decade. Gut microbiota have been revealed playing an important role in the pathogenesis of NAFLD. Sheng-Jiang Powder (SJP), an empirical Chinese medicine formula to treat NAFLD, showed great hepatoprotective properties, but the impact on gut microbiota has never been identified. Therefore, we performed this study to investigate the effect of SJP on gut microbiota in NAFLD mice. METHODS: NAFLD was induced by 12 weeks' high-fat diet (HFD) feeding. Mice were treated with SJP/normal saline daily for 6 weeks. Blood samples were obtained for serum biochemical indices and inflammatory cytokines measurement. Liver tissues were obtained for pathological evaluation and oil red O staining. The expression of lipid metabolism-related genes was quantified by RT-PCR and Western blotting. Changes in gut microbiota composition were analyzed by the 16s rDNA sequencing technique. RESULTS: HFD feeding induced significant increase in bodyweight and serum levels of TG, TC, ALT, and AST. The pathological examination revealed obvious hepatic steatosis in HFD feeding mice. Coadministration of SJP effectively protected against bodyweight increase and lipid accumulation in blood and liver. Increased expression of PPARγ mRNA was observed in HFD feeding mice, but a steady elevation of PPARγ protein level was only found in SJP-treated mice. Meanwhile, the expression of FASN was much higher in HFD feeding mice. Microbiome analysis revealed obvious changes in gut microbiota composition among diverse groups. SJP treatment modulated the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, including norank-f-Erysipelotrichaceae and Roseburia. CONCLUSIONS: SJP is efficient in attenuating HFD-induced NAFLD, and it might be partly attributed to the regulation of gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...