Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 11(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37110249

RESUMEN

Oligocene waters are widely recognized as excellent sources of drinking water. Due to the belief in their good quality, the water from Oligocene intakes in Warsaw, Poland, is made available to users without prior treatment or disinfection. The present study aimed at assessing possible microbiological risks associated with the use of this water. The occurrence of microbiological contaminants in selected intakes was evaluated, in addition to an assessment of possible changes in the microbiological quality of the water under typical storage conditions. The possibility of antibiotic resistance in bacteria isolated from Oligocene water samples was also investigated, as was their sensitivity to selected disinfectants. A small number of bacteria-27.0 ± 60.8 CFU/cm3 and 3.0 ± 3.0 CFU/cm3-were found in Oligocene water intakes for psychrophilic and mesophilic bacteria, respectively. Fecal bacteria were not detected. Bacteria present in Oligocene waters showed the ability to multiply intensively during standard water storage; this was especially true for mesophilic bacteria in water stored at room temperature. In some samples, bacterial counts reached 103-104 CFU/cm3 after 48 h. Almost all bacterial isolates were resistant to the commonly used antibiotics: ampicillin, vancomycin and rifampicin. The bacteria were also insensitive to some disinfectants.

2.
Pol J Microbiol ; 65(4): 475-477, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28735333

RESUMEN

The aim of this study was to estimate the susceptibility of Staphylococcus hominis bacteria to the bacteriostatic agent in respiratory protective filters. Four types of filter media of different characteristics were tested. The number of bacteria was estimated by a culture-based method. It was proved that in treated filters the number of S. hominis was significantly reduced, even below the detection limit, while in untreated material bacteria were able to grow and multiply up to 100-fold within 8 hours. There was no correlation between filter structure and changes in the number of bacterial cells.


Asunto(s)
Contaminación de Equipos , Dispositivos de Protección Respiratoria/microbiología , Humanos
3.
Aerobiologia (Bologna) ; 28(2): 185-193, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22523449

RESUMEN

Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and particles size ranged 0.246-17.165 µm. The upstream and downstream concentration of the aerosol was measured with a laser particle counter PCS-2010. Tested bioaerosol contained 4 bacterial strains of different shape and size: Micrococcus luteus,Micrococcus varians, Pseudomonas putida and Bacillus subtilis. Number of the biological particles was estimated with a culture-based method. Results obtained with bioaerosol did not confirmed 100% filters efficiency noted for the mineral test dust of the same aerodynamic diameter. Maximum efficiency tested with bacterial cells was 99.8%. Additionally, cells reemission from filters into air was also studied. Bioaerosol contained 3 bacterial strains: Micrococcus varians, Pseudomonas putida and Bacillus subtilis. It was proved that the highest intensity of the reemission process was during the first 5 min. and reached maximum 0.63% of total number of bacteria retained in filters. Spherical cells adhered stronger to the filter fibres than cylindrical ones. It was concluded that non-biological aerosol containing particles of the same shape and surface characteristics (like DEHS spherical particles) can not give representative results for all particles present in the filtered air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...