Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J AAPOS ; 28(1): 103826, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246312

RESUMEN

No previous imaging study has described the appearance of the inferior oblique muscle after surgery. It is unknown whether findings signifying prior myectomy or recession are recognizable on magnetic resonance (MR) imaging and how they might differ for the two procedures. After myectomy via a temporal approach, the cauterized muscle stump retracts into the medial orbit. How far it retracts and whether it reattaches to the globe remains unclear. To address these issues, orbital MR images were reviewed in 5 patients who had previously undergone inferior oblique myectomy or recession. In each case, the operated muscle exhibited subtle but telltale features, when compared with the normal, fellow inferior oblique. After myectomy, the inferior oblique still terminated lateral to the inferior rectus muscle and appeared closely apposed to the globe, although not necessarily attached to the sclera.


Asunto(s)
Músculos Oculomotores , Estrabismo , Humanos , Músculos Oculomotores/diagnóstico por imagen , Músculos Oculomotores/cirugía , Órbita/diagnóstico por imagen , Órbita/cirugía , Imagen por Resonancia Magnética , Cabeza , Periodo Posoperatorio , Estrabismo/diagnóstico por imagen , Estrabismo/cirugía , Procedimientos Quirúrgicos Oftalmológicos/métodos
2.
Ophthalmol Retina ; 7(12): 1027-1034, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37236319

RESUMEN

OBJECTIVE: To identify individual and systems-focused risk factors for pars plana vitrectomy among patients with proliferative diabetic retinopathy (PDR) in a diverse, urban, safety-net hospital setting. DESIGN: Single-center, retrospective, observational, case-control study at Zuckerberg San Francisco General Hospital and Trauma Center between 2017 and 2022. SUBJECTS: Two hundred twenty-two patients with PDR over a 5-year span (2017-2022), consisting of 111 cases who underwent vitrectomy for vision-threatening complications (tractional retinal detachment, nonclearing vitreous hemorrhage, and neovascular glaucoma) and 111 controls with PDR with no history of vitrectomy or vision-threatening complications. Controls were matched 1:1 through incidence density sampling. METHODS: Medical records were reviewed from time of entry into hospital system to vitrectomy date (or date-matched clinic visit for controls). Individual-focused exposures included age, gender, ethnicity, language, homelessness, incarceration, smoking status, area deprivation index, insurance status, baseline retinopathy stage, baseline visual acuity, baseline hemoglobin A1c, panretinal photocoagulation status, and cumulative anti-VEGF treatments. System-focused exposures included external department involvement, referral route, time within hospital and ophthalmology systems, interval between screening and ophthalmology appointment, interval between conversion to proliferative disease and panretinal photocoagulation or first treatment, and loss-to-follow-up in intervals of active proliferative disease. MAIN OUTCOME MEASURES: Odds ratios (ORs) for each exposure on vision-threatening diabetic complications requiring vitrectomy. RESULTS: The absence of panretinal photocoagulation was the primary significant individual-focused risk factor for vitrectomy in the multivariable analysis (OR, 4.78; P = 0.011). Systems-focused risk factors included longer interval between PDR diagnosis and initial treatment (weeks; OR, 1.06; P = 0.024) and greater cumulative duration of loss-to-follow-up during intervals of active PDR (months; OR, 1.10; P = 0.002). Greater duration in the ophthalmology system was the primary systems-focused protective factor against vitrectomy (years; OR, 0.75; P = 0.035). CONCLUSIONS: Largely modifiable variables modulate risk of complications requiring diabetic vitrectomy. Each additional month of loss-to-follow-up for patients with active proliferative disease increased odds of vitrectomy by 10%. Optimizing modifiable factors to promote earlier treatment and maintain critical follow-up in proliferative disease may reduce vision-threatening complications requiring vitrectomy in a safety-net hospital setting. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Estudios de Casos y Controles , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Retinopatía Diabética/cirugía , Estudios Retrospectivos , Factores de Riesgo , Proveedores de Redes de Seguridad , Vitrectomía
3.
Am J Ophthalmol ; 250: 1-11, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36646238

RESUMEN

PURPOSE: To compare cone structure and function between RPGR- and USH2A-associated retinal degeneration. DESIGN: Retrospective, observational, cross-sectional study. METHODS: This multicenter study included 13 eyes (9 participants) with RPGR-related X-linked retinitis pigmentosa (RPGR), 15 eyes (10 participants) with USH2A-related Usher syndrome type 2 (USH2), 16 eyes (9 participants) with USH2A-related autosomal recessive retinitis pigmentosa (ARRP), and 7 normal eyes (6 participants). Structural measures included cone spacing and density from adaptive optics scanning laser ophthalmoscopy and photoreceptor inner segment (IS), outer segment (OS), and outer nuclear layer (ONL) thickness from optical coherence tomography (OCT) images. OCT angiography images were used to study choriocapillaris flow deficit percent (CCFD). Cone function was assessed by fundus-guided microperimetry. Measures were compared at designated regions using analysis of variance with pairwise comparisons among disease groups, adjusted for disease duration and eccentricity. RESULTS: OCT segmentation revealed shorter OS and IS, with reduced ONL thickness in RPGR compared to normal (OS: P < .001, IS: P = .001, ONL: P = .005), USH2 (OS: P = .01, IS: P = .03, ONL: P = .03), or ARRP (OS: P = .001, ONL: P = .03). Increased cone spacing was observed in both RPGR (P = .03) and USH2 compared with normal (P = .048). The mean CCFD in RPGR was greater than in USH2 (P = .02). Microperimetry demonstrated below-normal regional sensitivity in RPGR (P = .004), USH2 (P = .02), and ARRP (P = .009), without significant intergroup differences. CONCLUSIONS: Outer retinal structure and choriocapillaris perfusion were more abnormal in RPGR- than USH2A-related retinal degenerations, whereas there were no significant differences in below-normal regional sensitivity between each rod-cone degeneration associated with variants in these 2 genes expressed at the photoreceptor-connecting cilium.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Síndromes de Usher , Humanos , Estudios Transversales , Electrorretinografía , Proteínas de la Matriz Extracelular/genética , Proteínas del Ojo/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
4.
Front Endocrinol (Lausanne) ; 13: 1009379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246891

RESUMEN

Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-ß, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.


Asunto(s)
Receptores de Estrógenos , Receptores de Glutamato Metabotrópico , Estrógenos/metabolismo , Femenino , Glutamatos , Humanos , Ligandos , Motivación , Receptores de Estrógenos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Reproducción
5.
J Neuroendocrinol ; 34(6): e13082, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35000221

RESUMEN

The development of oestrogen positive feedback is a hallmark of female puberty. Both oestrogen and progesterone signalling are required for the functioning of this neuroendocrine feedback loop but the physiological changes that underlie the emergence of positive feedback remain unknown. Only after puberty does oestradiol (E2) facilitate progesterone synthesis in the rat female hypothalamus (neuroP), an event critical for positive feedback and the LH surge. We hypothesize that prior to puberty, these astrocytes have low levels of membrane oestrogen receptor alpha (ERα), which is needed for facilitation of neuroP synthesis. Thus, we hypothesized that prepubertal astrocytes are unable to respond to E2 with increased neuroP synthesis due a lack of membrane ERα. To test this, hypothalamic tissues and enriched primary hypothalamic astrocyte cultures were acquired from prepubertal (postnatal week 3) and post-pubertal (week 8) female mice. E2-facilitated neuroP was measured in the hypothalamus pre- and post-puberty, and hypothalamic astrocyte responses were measured after treatment with E2. Prior to puberty, E2-facilitated neuroP synthesis did not occur in the hypothalamus, and mERα expression was low in hypothalamic astrocytes, but E2-facilitated neuroP synthesis in the rostral hypothalamus and mERα expression increased post-puberty. The increase in mERα expression in hypothalamic astrocytes corresponded with a post-pubertal increase in caveolin-1 protein, PKA phosphorylation, and a more rapid [Ca2+ ]i flux in response to E2. Together, results from the present study indicate that E2-facilitated neuroP synthesis occurs in the rostral hypothalamus, develops during puberty, and corresponds to a post-pubertal increase in mERα levels in hypothalamic astrocytes.


Asunto(s)
Estradiol , Receptor alfa de Estrógeno , Animales , Astrocitos/metabolismo , Estradiol/fisiología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Ratones , Progesterona/metabolismo , Ratas , Maduración Sexual
6.
J Neuroendocrinol ; 34(1): e13071, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904297

RESUMEN

Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.


Asunto(s)
Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/fisiología , Familia-src Quinasas/fisiología , Animales , Femenino , Hipotálamo/metabolismo , Ovulación/sangre , Ovulación/metabolismo , Ratas , Ratas Long-Evans , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
7.
J Neurosci ; 41(42): 8790-8800, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34470806

RESUMEN

Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.


Asunto(s)
Complejo Nuclear Corticomedial/metabolismo , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Conducta Social , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Animales , Femenino , Ácido Glutámico/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
8.
PLoS One ; 16(8): e0256148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407144

RESUMEN

In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Hipotálamo/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/metabolismo , Modelos Animales , Ovariectomía/métodos , Ratas , Ratas Long-Evans
9.
Endocrinology ; 162(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379733

RESUMEN

Kisspeptin, encoded by Kiss1, stimulates gonadotropin-releasing hormone neurons to govern reproduction. In female rodents, estrogen-sensitive kisspeptin neurons in the rostral anteroventral periventricular (AVPV) hypothalamus are thought to mediate estradiol (E2)-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. AVPV kisspeptin neurons coexpress estrogen and progesterone receptors (PGRs) and are activated during the LH surge. While E2 effects on kisspeptin neurons have been well studied, progesterone's regulation of kisspeptin neurons is less understood. Using transgenic mice lacking PGR exclusively in kisspeptin cells (termed KissPRKOs), we previously demonstrated that progesterone action specifically in kisspeptin cells is essential for ovulation and normal fertility. Unlike control females, KissPRKO females did not generate proper LH surges, indicating that PGR signaling in kisspeptin cells is required for positive feedback. However, because PGR was knocked out from all kisspeptin neurons in the brain, that study was unable to determine the specific kisspeptin population mediating PGR action on the LH surge. Here, we used targeted Cre-mediated adeno-associated virus (AAV) technology to reintroduce PGR selectively into AVPV kisspeptin neurons of adult KissPRKO females, and tested whether this rescues occurrence of the LH surge. We found that targeted upregulation of PGR in kisspeptin neurons exclusively in the AVPV is sufficient to restore proper E2-induced LH surges in KissPRKO females, suggesting that this specific kisspeptin population is a key target of the necessary progesterone action for the surge. These findings further highlight the critical importance of progesterone signaling, along with E2 signaling, in the positive feedback induction of LH surges and ovulation.


Asunto(s)
Hipotálamo Anterior/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Receptores de Progesterona/fisiología , Animales , Estradiol/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Femenino , Hipotálamo Anterior/citología , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/metabolismo , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Progesterona/farmacología , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
Transgend Health ; 5(4): 246-257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376803

RESUMEN

Purpose: Pubertal suppression is standard of care for early pubertal transgender youth to prevent the development of undesired and distressing secondary sex characteristics incongruent with gender identity. Preliminary evidence suggests pubertal suppression improves mental health functioning. Given the widespread changes in brain and cognition that occur during puberty, a critical question is whether this treatment impacts neurodevelopment. Methods: A Delphi consensus procedure engaged 24 international experts in neurodevelopment, gender development, puberty/adolescence, neuroendocrinology, and statistics/psychometrics to identify priority research methodologies to address the empirical question: is pubertal suppression treatment associated with real-world neurocognitive sequelae? Recommended study approaches reaching 80% consensus were included in the consensus parameter. Results: The Delphi procedure identified 160 initial expert recommendations, 44 of which ultimately achieved consensus. Consensus study design elements include the following: a minimum of three measurement time points, pubertal staging at baseline, statistical modeling of sex in analyses, use of analytic approaches that account for heterogeneity, and use of multiple comparison groups to minimize the limitations of any one group. Consensus study comparison groups include untreated transgender youth matched on pubertal stage, cisgender (i.e., gender congruent) youth matched on pubertal stage, and an independent sample from a large-scale youth development database. The consensus domains for assessment includes: mental health, executive function/cognitive control, and social awareness/functioning. Conclusion: An international interdisciplinary team of experts achieved consensus around primary methods and domains for assessing neurodevelopmental effects (i.e., benefits and/or difficulties) of pubertal suppression treatment in transgender youth.

11.
J Clin Med ; 9(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003381

RESUMEN

In this cross-sectional observational study, we investigated the relationship between photoreceptor layer disruption and telangiectasia in patients diagnosed with early stage macular telangiectasia type 2 (MacTel). A total of 31 eyes (17 patients) with MacTel were imaged with adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography angiography (OCTA). Confocal AOSLO was used to visualize dark regions of nonwaveguiding outer segments, which we refer to as "photoreceptor lesions". En-face OCTA images of the deep capillary plexus (DCP) were used in conjunction with confocal AOSLO to evaluate the topographic relationship between areas of capillary telangiectasias and photoreceptor lesions. Among seven eyes with early stage MacTel (stage 0-2 based on OCT), we identified ten photoreceptor lesions, all of which were located within parafoveal quadrants containing DCP telangiectasia on OCTA. Seven of the lesions corresponded to the intact ellipsoid zone on spectral-domain OCT (SD-OCT), and three of these also corresponded to the intact interdigitation zone. This work demonstrates a topographic relationship between AOSLO photoreceptor lesions and DCP telangiectasias, and it also suggests that these lesions with normal SD-OCT appearance may represent areas of photoreceptors at risk for dysfunction. Thus, confocal AOSLO may have a meaningful role in detecting early photoreceptor abnormalities in eyes with MacTel.

12.
Transl Vis Sci Technol ; 9(4): 5, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32818093

RESUMEN

Purpose: To evaluate differences in parafoveal vascular density surrounding arterioles and venules in type 2 macular telangiectasia (MacTel). Methods: Thirty-seven eyes (20 subjects) diagnosed with MacTel and 16 healthy eyes (10 subjects) were imaged with optical coherence tomography angiography between March 2016 and June 2019 in this single-center, observational, cross-sectional study. Arterioles and venules were manually identified, and perivascular density was generated using a custom MATLAB code. The primary outcome measure was the ratio of periarteriolar to perivenular vascular density (arteriovenous [A/V] capillary ratio) in the superficial and deep capillary plexuses across MacTel stages. The main secondary outcome measures were overall parafoveal vascular density (VD), periarteriolar VD, and perivenular VD. Results: In the superficial capillary plexus (SCP), the A/V capillary ratio was significantly higher in MacTel subjects than controls (0.914 vs. 0.892; P = 0.0044). The greatest differences occurred between controls and nonproliferative MacTel subjects without optical coherence tomography evidence of disease (P = 0.0055). A/V capillary ratios progressed in a nonlinear fashion with MacTel severity, increasing from nonproliferative disease (0.912) to intraretinal proliferative disease (0.931), then decreasing in subretinal proliferative disease (0.905). Parafoveal VD in the SCP was lower in MacTel subjects than controls only in subretinal proliferative disease (P = 0.0130). Conclusions: The A/V capillary ratio of the SCP is a quantifiable metric of vascular pathology in MacTel that occurs earlier than decline in parafoveal VD. Elevated A/V capillary ratios in MacTel are consistent with an early, disproportionately perivenular disruption in the SCP. Translational Relevance: Findings inform MacTel pathogenesis through revealing early perivenular capillary loss and offer a new quantitative metric for earliest stage MacTel.


Asunto(s)
Telangiectasia Retiniana , Capilares , Estudios Transversales , Humanos , Telangiectasia Retiniana/diagnóstico , Tomografía de Coherencia Óptica
13.
Artículo en Inglés | MEDLINE | ID: mdl-32670203

RESUMEN

Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie so-called estrogen positive feedback that induce the surge release of pituitary luteinizing hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It is now well-established that gonadotropin releasing hormone (GnRH) neurons express neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment kisspeptin expression and release needed to stimulate GnRH release, triggering the LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin neurons occurs through membrane PGR activation of Src family kinase (Src). This signaling cascade has been also implicated in PGR signaling in the arcuate nucleus of the hypothalamus, suggesting that Src may be a common mode of membrane PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal development, levels of membrane ERα increase in astrocytes coincident with an increase of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether these developmental changes occur in existing astrocytes or are due to a new population of astrocytes born during puberty. However, strong evidence suggests that it is the former. Blocking new cell addition during puberty attenuates the LH surge. Together these results demonstrate the importance of pubertal maturation involving hypothalamic astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone signaling for the CNS control of ovulation and reproduction.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Hormona Luteinizante/metabolismo , Progesterona/metabolismo , Maduración Sexual , Animales , Humanos , Neuronas/metabolismo , Ovulación , Reproducción
14.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31941660

RESUMEN

Estrogen and progesterone (P4) act in neural circuits to elicit lordosis, the stereotypical female sexual receptivity behavior. Estradiol acts through membrane receptors to rapidly activate a limbic-hypothalamic circuit consisting of the arcuate (ARH), medial preoptic (MPN), and ventromedial (VMH) nuclei of the hypothalamus. This initial activation results in a transient but necessary inhibition of lordosis, which appears to be a result of the release of ß-endorphin (ß-End) from proopiomelanocortin (POMC) terminals onto cells containing the µ-opioid receptor (MOR) in the MPN. To functionally examine the role of the MOR in the hypothalamic lordosis circuit, we transfected a channelrhodopsin (ChR2) adeno-associated virus into POMC cell bodies in the ARH and photostimulated POMC/ß-End axon terminals in the MPN in sexually receptive female Pomc-cre mice. Following estrogen and P4 priming, sexual receptivity was assessed by measuring the lordosis quotient (LQ). Following an initial trial for sexual receptivity, mice were photostimulated during behavioral testing, and brains were processed for MOR immunohistochemistry (IHC). Photostimulation decreased the LQ only in ChR2-expressing Pomc-cre mice. Furthermore, photostimulation of ChR2 in POMC/ß-End axon terminals in the MPN resulted in the internalization of MOR, indicating activation of the receptor. Our results suggest that the activation of the MOR in the MPN is sufficient to attenuate lordosis behavior in a hormone-primed, sexually receptive female mouse. These data support a central role of MOR in female sexual behavior, and provide further insight into the hypothalamus control of sexual receptivity.


Asunto(s)
Área Preóptica , betaendorfina , Animales , Núcleo Arqueado del Hipotálamo , Estradiol , Femenino , Ratones , Optogenética , Postura , Progesterona , Ratas , Ratas Long-Evans , Conducta Sexual Animal
15.
PLoS One ; 14(10): e0224393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31658282

RESUMEN

OBJECTIVES: To examine the topographical correlation between ellipsoid zone loss and telangiectasia in the deep capillary plexus in patients with macular telangiectasia type 2 (MacTel). METHODS: 38 eyes (20 subjects) diagnosed with MacTel were imaged with OCTA between March 2016 and June 2019 in this single center, cross-sectional observational study. The en face OCTA and OCT were evaluated for areas of deep capillary plexus telangiectasia and ellipsoid zone loss, respectively, and their outlines were superimposed to study their overlap (mm2). The primary outcome was percentage of overlap and its relationship to MacTel stage. Secondary outcomes included the relationship between neovascularization and hyperreflective foci as well as correlations between ellipsoid zone loss, deep capillary plexus telangiectasia and visual acuity. RESULTS: In nonproliferative MacTel stage, ellipsoid zone loss was localized to margins of telangiectatic areas (mean overlap = 15.2%). In proliferative stages, ellipsoid zone loss showed a higher degree of overlap with telangiectatic areas (mean overlap = 62.8%). Overlap increased with advancing MacTel stages, with an overall average of 45.3%. Overlap correlated highly with ellipsoid zone loss (r = 0.831; p<0.0001). Telangiectasia was present in all 38 eyes (range: 0.08mm2-0.99mm2), while ellipsoid zone loss was absent in 6 (range: 0.00-3.32mm2). Visual acuity correlated most strongly with ellipsoid zone loss (r = 0.569; p = 0.0002), followed by overlap (r = 0.544; p = 0.0004), and finally, telangiectasia (r = 0.404; p<0.0118). Presence of hyperreflective foci on OCT correlated with the presence and intraretinal location of neovascularization. CONCLUSIONS: Ellipsoid zone loss occurs at the margins of deep capillary plexus telangiectasia in nonproliferative MacTel, with progressively increasing overlap as MacTel advances, peaking in proliferative disease. Deep capillary plexus telangiectasia and its overlap with ellipsoid zone loss are two promising markers of nonproliferative MacTel, while hyper-reflective foci are markers for proliferative MacTel.


Asunto(s)
Células Fotorreceptoras de Vertebrados/patología , Telangiectasia Retiniana/patología , Adulto , Anciano , Anciano de 80 o más Años , Recuento de Células , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
J Neuroendocrinol ; 31(6): e12725, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31050077

RESUMEN

The two isoforms of the nuclear estrogen receptor, ERα and ERß are widely expressed in the central nervous system. Although they were first described as nuclear receptors, both isoforms have also been found at the cell membrane where they mediate cell signaling. Surface biotinylation studies using neuronal and glial primary cultures label an alternatively spliced form of ERα. The 52 kDa protein, ERαΔ4, is missing exon 4 and is highly expressed in membrane fractions derived from cultured cells. In vivo, both full-length (66 kDa) ERα and ERαΔ4 are present in membrane fractions. In response to estradiol, full-length ERα and ERαΔ4 are initially trafficked to the membrane, and then internalized in parallel. Previous studies determined that only the full-length ERα associates with metabotropic glutamate receptor-1a (mGluR1a), initiating cellular signaling. The role of ERαΔ4, remained to be elucidated. Here, we report ERαΔ4 trafficking, association with mGluR2/3, and downstream signaling in female rat arcuate nucleus (ARH). Caveolin (CAV) proteins are needed for ER transport to the cell membrane, and using co-immunoprecipitation CAV-3 was shown to associate with ERαΔ4. CAV-3 was necessary for ERαΔ4 trafficking to the membrane: in the ARH, microinjection of CAV-3 siRNA reduced CAV-3 and ERαΔ4a in membrane fractions by 50%, and 60%, respectively. Moreover, co-immunoprecipitation revealed that ERαΔ4 associated with inhibitory mGluRs, mGluR2/3. Estrogen benzoate (EB) treatment (5 µg; s.c.; every 4 days; three cycles) reduced levels of cAMP, an effect attenuated by antagonizing mGluR2/3. Following EB treatment, membrane levels of ERαΔ4 and mGluR2/3 were reduced implying ligand-induced internalization. These results implicate ERαΔ4 in an estradiol-induced inhibitory cell signaling in the ARH.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Caveolina 3/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Receptor alfa de Estrógeno/genética , Exones/genética , Femenino , Isoformas de Proteínas , Transporte de Proteínas , Ratas Long-Evans
17.
Cell ; 176(5): 1206-1221.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30773317

RESUMEN

Social behaviors, including behaviors directed toward young offspring, exhibit striking sex differences. Understanding how these sexually dimorphic behaviors are regulated at the level of circuits and transcriptomes will provide insights into neural mechanisms of sex-specific behaviors. Here, we uncover a sexually dimorphic role of the medial amygdala (MeA) in governing parental and infanticidal behaviors. Contrary to traditional views, activation of GABAergic neurons in the MeA promotes parental behavior in females, while activation of this population in males differentially promotes parental versus infanticidal behavior in an activity-level-dependent manner. Through single-cell transcriptomic analysis, we found that molecular sex differences in the MeA are specifically represented in GABAergic neurons. Collectively, these results establish crucial roles for the MeA as a key node in the neural circuitry underlying pup-directed behaviors and provide important insight into the connection between sex differences across transcriptomes, cells, and circuits in regulating sexually dimorphic behavior.


Asunto(s)
Complejo Nuclear Corticomedial/fisiología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal/fisiología , Complejo Nuclear Corticomedial/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Responsabilidad Parental , Factores Sexuales , Conducta Social
18.
Skeletal Radiol ; 48(7): 1111-1118, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30328483

RESUMEN

OBJECTIVE: To determine which normalization method may best account for confounding individual factors, such as age or BMI, when quantifying fat infiltration on MRI in patients with rotator cuff tears, the effects of normalization using three different muscles (teres major; triceps brachii; teres minor) were compared. METHODS: Thirty-seven consecutive patients diagnosed with rotator cuff pathology were included. MRI fat-water sequences were used to quantify rotator cuff intramuscular fat (%fat). Three reference muscles (teres major, triceps, teres minor) were used to derive normalized %fat. Relationships between intramuscular %fat and tear size, age, and BMI in each rotator cuff muscle, before and after normalization, were compared with Fisher transformations (α = 0.05). RESULTS: Normalization with teres major ameliorated confounding relationships of age and BMI on rotator cuff %fat. In contrast, normalization with triceps maintained the confounding relationships between %fat and age in supraspinatus (p = 0.03) and infraspinatus/teres minor (p = 0.028). Normalization with teres minor maintained the confounding relationship between %fat and BMI in subscapularis (p = 0.039). Normalization with teres major best-maintained relationships between tear size and infraspinatus/teres minor %fat (p = 0.021). In contrast, normalization with triceps or teres minor eliminated all significant relationships with tear size. CONCLUSIONS: Results of this pilot study suggest normalization to teres major using MRI-based %fat quantification methods can effectively control for individual factors, such as BMI or age, and may have utility in evaluating and monitoring rotator cuff fat infiltration attributed specifically to a tendon tear.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Tejido Adiposo/patología , Factores de Edad , Índice de Masa Corporal , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Estudios Retrospectivos , Lesiones del Manguito de los Rotadores/patología
20.
Neuroendocrinology ; 106(2): 101-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28384629

RESUMEN

Positive feedback on gonadotropin release requires not only estrogen but also progesterone to activate neural circuits. In rodents, ovarian estradiol (E2) stimulates progesterone synthesis in hypothalamic astrocytes (neuroP), needed for the luteinizing hormone (LH) surge. Kisspeptin (kiss) neurons are the principal stimulators of gonadotropin-releasing hormone neurons, and disruption of kiss signaling abrogates the LH surge. Similarly, blocking steroid synthesis in the hypothalamus or deleting classical progesterone receptor (PGR) selectively in kiss neurons prevents the LH surge. These results suggest a synergistic action of E2 and progesterone in kiss neurons to affect gonadotropin release. The mHypoA51, immortalized kiss-expressing neuronal cell line derived from adult female mice, is a tractable model for examining integration of steroid signaling underlying estrogen positive feedback. Here, we report that kiss neurons in vitro integrate E2 and progesterone signaling to increase levels of kiss translation and release. mHypoA51 neurons expressed nonclassical membrane progesterone receptors (mPRα and mPRß) and E2-inducible PGR, required for progesterone-augmentation of E2-induced kiss expression. With astrocyte-conditioned media or in mHypoA51-astrocyte co-culture, neuroP augmented stimulatory effects of E2 on kiss protein. Progesterone activation of classical, membrane-localized PGR led to activation of MAPK and Src kinases. Importantly, progesterone or Src activation induced release of kiss from E2-primed mHypoA51 neurons. Consistent with previous studies, the present results provide compelling evidence that the interaction of E2 and progesterone stimulates kiss expression and release. Further, these results demonstrate a mechanism though which peripheral E2 may prime kiss neurons to respond to neuroP, mediating estrogen positive feedback.


Asunto(s)
Estrógenos/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo , Progesterona/metabolismo , Animales , Astrocitos/metabolismo , Línea Celular , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Receptor alfa de Estrógeno/metabolismo , Estrógenos/administración & dosificación , Retroalimentación Fisiológica/fisiología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Progesterona/administración & dosificación , Biosíntesis de Proteínas/fisiología , Receptores de Progesterona/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...