Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Clin Exp Immunol ; 215(2): 120-125, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38018224

RESUMEN

Macrophage activation results in the accumulation of endogenous metabolites capable of adopting immunomodulatory roles; one such bioactive metabolite is itaconate. After macrophage stimulation, the TCA-cycle intermediate cis-aconitate is converted to itaconate (by aconitate decarboxylase-1, ACOD1) in the mitochondrial matrix. Recent studies have highlighted the potential of targeting itaconate as a therapeutic strategy for lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and respiratory infections. This review aims to bring together evidence which highlights a role for itaconate in chronic lung diseases (such as asthma and pulmonary fibrosis) and respiratory infections (such as SARS-CoV-2, influenza and Mycobacterium tuberculosis infection). A better understanding of the role of itaconate in lung disease could pave the way for novel therapeutic interventions and improve patient outcomes in respiratory disorders.


Asunto(s)
Asma , Enfermedades Pulmonares , Infecciones del Sistema Respiratorio , Humanos , Succinatos/metabolismo
3.
Eur J Immunol ; 52(11): 1768-1775, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36106692

RESUMEN

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defense and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN receptor-1 deficient (Ifnar1-/- ) mice, to study the role of type I IFN signalling and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signalling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication, and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN signalling deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Inmunidad Innata , Receptor de Interferón alfa y beta , Animales , Ratones , COVID-19/inmunología , Interferón Tipo I , Pandemias , Receptor de Interferón alfa y beta/genética , SARS-CoV-2
4.
Curr Protoc ; 2(8): e505, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35938685

RESUMEN

Precision-cut lung slices (PCLS) are a novel tool to study cells of the lower airways. As PCLS retain the integrity and architecture of the lung, they constitute a robust model for studying the cells of the lower respiratory tract. Use of PCLS for imaging has been previously documented; however, other applications and techniques can also be applied to PCLS to increase their use and therefore decrease the number of animals needed for each experiment. We present a detailed protocol for generating PCLS from the murine lung. We show that cultured PCLS remain viable up to at least 8 days of culture, that RNA can be isolated from the tissue, and that flow cytometry can be carried out on the cells obtained from the PCLS. Furthermore, we demonstrate that cytokines and chemokines can be detected in the culture supernatants of PCLS exposed to viruses. Overall, these protocols expand the use of PCLS, especially for infection studies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Precision-cut lung slices (PCLS) Basic Protocol 2: PCLS culture and viability Basic Protocol 3: RNA isolation from PCLS, cDNA conversion, and RT-qPCR Basic Protocol 4: Staining of cells from PCLS for flow cytometry Basic Protocol 5: In vivo RSV administration and ex vivo PCLS RSV exposure.


Asunto(s)
Pulmón , Virosis , Animales , Inmunidad Innata , Ratones , ARN , Tórax
5.
Sci Rep ; 10(1): 1110, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980667

RESUMEN

Lung and airway neutrophils are a hallmark of severe disease in infants with respiratory syncytial virus (RSV)-induced lower respiratory tract infections. Despite their abundance in the lungs during RSV infection of both mice and man, the role of neutrophils in viral control and in immune pathology is not clear. Here, antibody mediated neutrophil depletion was used to investigate the degree to which neutrophils impact the lung immune environment, the control of viral replication and the peak severity of disease after RSV infection of mice. Neutrophil depletion did not substantially affect the levels of inflammatory mediators such as type I interferons, IL-6, TNF-α or IL-1ß in response to RSV. In addition, the lack of neutrophils did not change the viral load during RSV infection. Neither neutrophil depletion nor the enhancement of lung neutrophils by administration of the chemoattractant CXCL1 during RSV infection affected disease severity as measured by weight loss. Therefore, in this model of RSV infection, lung neutrophils do not offer obvious benefits to the host in terms of increasing anti-viral inflammatory responses or restricting viral replication and neutrophils do not contribute to disease severity.


Asunto(s)
Pulmón/inmunología , Resultados Negativos , Neutrófilos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano , Carga Viral , Animales , Células Cultivadas , Quimiocina CXCL1 , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...