Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2170, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461153

RESUMEN

All-polymer solar cells (all-PSCs) offer improved morphological and mechanical stability compared with those containing small-molecule-acceptors (SMAs). They can be processed with a broader range of conditions, making them desirable for printing techniques. In this study, we report a high-performance polymer acceptor design based on bithiazole linker (PY-BTz) that are on par with SMAs. We demonstrate that bithiazole induces a more coplanar and ordered conformation compared to bithiophene due to the synergistic effect of non-covalent backbone planarization and reduced steric encumbrances. As a result, PY-BTz shows a significantly higher efficiency of 16.4% in comparison to the polymer acceptors based on commonly used thiophene-based linkers (i.e., PY-2T, 9.8%). Detailed analyses reveal that this improvement is associated with enhanced conjugation along the backbone and closer interchain π-stacking, resulting in higher charge mobilities, suppressed charge recombination, and reduced energetic disorder. Remarkably, an efficiency of 14.7% is realized for all-PSCs that are solution-sheared in ambient conditions, which is among the highest for devices prepared under conditions relevant to scalable printing techniques. This work uncovers a strategy for promoting backbone conjugation and planarization in emerging polymer acceptors that can lead to superior all-PSCs.

2.
ACS Nano ; 17(18): 18392-18401, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668312

RESUMEN

Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.

3.
Sci Adv ; 9(32): eadi1870, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556541

RESUMEN

Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the possibility of building minimally invasive cell-specific structures and interfaces. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed materials. Here, we design a method for highly localized expression of enzymes targeted to the plasma membrane of primary neurons, with minimal intracellular retention. Next, we show that polymers synthesized in situ by this approach form dense extracellular clusters selectively on the targeted cell membrane and that neurons remain viable after polymerization. Last, we show generalizability of this method across a range of design strategies. This platform can be readily extended to incorporate a broad diversity of materials onto specific cell membranes within tissues and may further enable next-generation biological interfaces.


Asunto(s)
Neuronas , Polímeros , Polímeros/química , Neuronas/fisiología , Membrana Celular/metabolismo , Materiales Biocompatibles/química
4.
Nat Nanotechnol ; 18(10): 1175-1184, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37322142

RESUMEN

Stretchable polymer semiconductors (PSCs) are essential for soft stretchable electronics. However, their environmental stability remains a longstanding concern. Here we report a surface-tethered stretchable molecular protecting layer to realize stretchable polymer electronics that are stable in direct contact with physiological fluids, containing water, ions and biofluids. This is achieved through the covalent functionalization of fluoroalkyl chains onto a stretchable PSC film surface to form densely packed nanostructures. The nanostructured fluorinated molecular protection layer (FMPL) improves the PSC operational stability over an extended period of 82 days and maintains its protection under mechanical deformation. We attribute the ability of FMPL to block water absorption and diffusion to its hydrophobicity and high fluorination surface density. The protection effect of the FMPL (~6 nm thickness) outperforms various micrometre-thick stretchable polymer encapsulants, leading to a stable PSC charge carrier mobility of ~1 cm2 V-1 s-1 in harsh environments such as in 85-90%-humidity air for 56 days or in water or artificial sweat for 42 days (as a benchmark, the unprotected PSC mobility degraded to 10-6 cm2 V-1 s-1 in the same period). The FMPL also improved the PSC stability against photo-oxidative degradation in air. Overall, we believe that our surface tethering of the nanostructured FMPL is a promising approach to achieve highly environmentally stable and stretchable polymer electronics.

5.
Science ; 380(6648): 935-941, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262169

RESUMEN

Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.

6.
ACS Macro Lett ; 11(4): 532-536, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575324

RESUMEN

We explore a cross-linked polymer network based on a visible light photodynamic [2 + 2] cycloaddition driven by styrylpyrene chemistry. Based on a polymer backbone with pendent styrylpyrene units, the network can be formed by using λ = 450 nm irradiation. Upon irradiation with λ = 340 nm, a photostationary state is generated within the network with ∼17% of the styrylpyrene units open compared to close to 2% in the visible light cured state. The limited fraction of open [2 + 2] couples is caused by their proximity and is in sharp contrast to solution experiments on the photoreactive moiety. Thus, the polymer network retains its mechanical properties even at the photostationary point. We hypothesize that the application of an additional stimulus could serve as a second gate for inducing network disintegration by spacing the [2 + 2] units during ultraviolet irradiation.


Asunto(s)
Luz , Polímeros , Reacción de Cicloadición , Polímeros/química , Rayos Ultravioleta
7.
Chem Commun (Camb) ; 57(23): 2911-2914, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33616594

RESUMEN

Waste production associated with the use of non-degradable materials in packaging is a growing cause of environmental concern, with the polyurethane (PU) class being notorious for their lack of degradability. Herein, we incorporate photosensitive ortho-Nitrobenzyl units into PUs to achieve controllable photodegradability. We performed their photolysis in solution and thin films which can inform the design of degradable adhesives.

8.
ACS Macro Lett ; 10(4): 447-452, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549234

RESUMEN

Herein, we demonstrate that the photochemical cleavage of linear polymers containing a midchain photocleavable moiety strongly depends on the chain length. Based on an ortho-nitrobenzyl (oNB) difunctional reversible addition-fragmentation chain-transfer agent, well-defined poly(methyl acrylate)s (Mn = 1.59-67.6 kg mol-1, D = 1.3-1.4) were synthesized following a core-first approach. Photolysis at λmax = 350 nm of the ortho-nitrobenzyl moiety led to the generation of equally sized polymer segments. The rate of oNB-driven polymer fragmentation, which can be well described by first-order kinetics, strongly increases with increasing molecular weight in a nonlinear fashion, potentially caused by entropic considerations and is compared to the ideal chain model. The current study thus demonstrates that polymer photolysis is dependent on the polymer chain length, with critical implications for photocleavable network design.


Asunto(s)
Polímeros , Peso Molecular , Fotólisis , Polímeros/química
9.
J Am Chem Soc ; 142(52): 21651-21655, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337866

RESUMEN

Herein, we introduce a comprehensive methodology to map the reactivity of photochemical systems on surfaces. The reactivity of photoreactive groups in solution often departs from their corresponding solution absorption spectra. On surfaces, the relationship between the surface absorption spectra and reactivity remains unexplored. Thus, herein, the reactivity of an o-methylbenzaldehyde and a tetrazole, as ligation partners for maleimide functionalized polymers, was investigated when the reactive moieties are tethered to a surface. The ligation reaction of tetrazole functionalized surfaces was found to proceed rapidly leading to high grafting densities, while o-methylbenzaldehyde functionalized substrates required longer irradiation times and resulted in lower surface coverage at the same wavelength (330 nm). Critically, wavelength resolved reactivity profiles were found to closely match the surface absorption spectra, contrary to previously reported red shifts in solution for the same chromophores.

10.
ACS Macro Lett ; 9(12): 1785-1792, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653683

RESUMEN

The morphology of surfaces critically influences their interaction with the surrounding phase. Herein, we report a modular approach for the synthesis of organic-inorganic raspberry-, strawberry-, and seedpod-like particles to template the porosity of superficially porous particles. Divinylbenzene (DVB) microspheres were employed as core particles, which were modified with polar and nonpolar polymer shells. Subsequently, silica nanoparticle templates were covalently tethered to said particles. Further grafting of polymer shells and subsequent template removal yielded superficially porous core-shell particles. In addition, we introduce a facile procedure for the synthesis of superficially porous particles without distinguishable core-shell morphology. Organic seedpod-like particles were prepared from DVB and silica templates, yielding superficially porous particles after template removal. The surface morphology of the templated particles was investigated via scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) was performed to prove the chemical modification of the particle surfaces.

11.
Macromol Rapid Commun ; 41(1): e1900414, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31507017

RESUMEN

Photochemistry allows chemists to exert control over chemical reactions with spatiotemporal precision. Furthermore, light holds the potential to not only gate when and where but also which reaction takes place. Herein, two photocycloaddition reactions-initiated by different colors of visible light-are utilized to control the intramolecular crosslinking of single polymer chains. Irradiation with blue light (λmax = 470 nm) triggers a [2 + 2] photocycloaddition inducing an initial intramolecular crosslinking reaction, whereas subsequent irradiation with violet light (λmax = 415 nm) induces a [4 + 4] photocycloaddition, fully compacting the dual photoreactive polymer into a single-chain nanoparticle. Importantly, both crosslinked states are accessible under ultra-mild conditions requiring nothing but two different colors of visible light. The reported strategy of wavelength-selective crosslinking degrees provides key potential to be translated into materials applications for the remote control of mechanical properties on the molecular level.


Asunto(s)
Luz , Polímeros/química , Reacción de Cicloadición , Nanopartículas/química , Polímeros/síntesis química , Pirenos/química
12.
Adv Mater ; 31(40): e1902665, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31414512

RESUMEN

Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.

13.
Adv Mater ; 31(8): e1807288, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30614578

RESUMEN

A platform technology for multimaterial photoresists that can be orthogonally cured by disparate colors of light is introduced. The resist's photochemistry is designed such that one wavelength selectively activates the crosslinking of one set of macromolecules, while a different wavelength initiates network formation of a different set of chains. Each wavelength is thus highly selective towards a specific photoligation reaction within the resist. Critically, the shorter wavelength does not induce ligation of the longer wavelength selective species within the same resist mixture, defined as "wavelength orthogonality." Uniquely, this dual-color addressable resist system allows generating spatially resolved soft matter materials by simply selecting the curing wavelength, thus constituting a wavelength-orthogonal multimaterial resist with applications ranging from coatings to 3D additive manufacturing of multimaterial architectures.

14.
ACS Macro Lett ; 8(7): 800-805, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35619509

RESUMEN

When grafting polymers onto surfaces, the reaction conditions critically influence the resulting interface properties, including the grafting density and molar mass distribution (MMD) on the surface. Herein, we show theoretically and experimentally that the application of poor solvents is beneficial for the "grafting-to" approach. We demonstrate the effect by grafting poly(methyl methacrylate) chains on silica nanoparticles in different solvents and compare the MMD of the polymer in solution before and after grafting via size exclusion chromatography (SEC). The shorter polymer chains are preferentially grafted onto the surface, leading to a distortion effect between the MMD in solution and on surfaces. The molecular weight distortion effect is significantly higher for ethyl acetate (good solvent quality, difference in Mw surface to solution 14%) than for N,N-dimethylacetamide (poor solvent quality, 6%). The difference in MMD on the surface to the solution significantly affects both the surface properties (e.g. the grafting densities) and their determination.

15.
Adv Mater ; 30(21): e1706321, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29512237

RESUMEN

Well-defined polymer strands covalently tethered onto solid substrates determine the properties of the resulting functional interface. Herein, the current approaches to determine quantitative grafting densities are assessed. Based on a brief introduction into the key theories describing polymer brush regimes, a user's guide is provided to estimating maximum chain coverage and-importantly-examine the most frequently employed approaches for determining grafting densities, i.e., dry thickness measurements, gravimetric assessment, and swelling experiments. An estimation of the reliability of these determination methods is provided via carefully evaluating their assumptions and assessing the stability of the underpinning equations. A practical access guide for comparatively and quantitatively evaluating the reliability of a given approach is thus provided, enabling the field to critically judge experimentally determined grafting densities and to avoid the reporting of grafting densities that fall outside the physically realistic parameter space. The assessment is concluded with a perspective on the development of advanced approaches for determination of grafting density, in particular, on single-chain methodologies.

16.
Langmuir ; 34(10): 3264-3274, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29442516

RESUMEN

We pioneer a versatile surface modification strategy based on mussel-inspired oxidative catecholamine polymerization for the design of nitroxide-containing thin polymer films. A 3,4-dihydroxy-l-phenylalanine (l-DOPA) monomer equipped with a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-derived oxidation-labile hydroxylamine functional group is employed as a universal coating agent to generate polymer scaffolds with persistent radical character. Various types of materials including silicon, titanium, ceramic alumina, and inert poly(tetrafluoroethylene) (PTFE) were successfully coated with poly(DOPA-TEMPO) thin films in a one-step dip-coating procedure under aerobic, slightly alkaline (pH 8.5) conditions. Steadily growing polymer films (∼1.1 nm h-1) were monitored by ellipsometry, and their thicknesses were critically compared with those obtained from atomic force microscopic cross-sectional profiles. The heterogeneous composition of surface-adherent nitroxide scaffolds examined by X-ray photoelectron spectroscopy was correlated to that examined by in-solution polymer analysis via high-resolution electrospray ionization mass spectrometry, revealing oligomeric structures with up to six repeating units, mainly composed of covalently linked dihydroxyindole along the polymer backbone. Critically, the reversible redox-active character of the nitroxide-containing polymer scaffolds was investigated by cyclic voltammetric measurements, revealing a convenient and facile access route to electrochemically active nitroxide polymer coatings with potential application in electronic devices such as organic radical batteries.


Asunto(s)
Óxidos de Nitrógeno/química , Polímeros/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
17.
ACS Macro Lett ; 7(8): 898-903, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650962

RESUMEN

Multicomponent polymerizations (MCPs) have emerged as a powerful tool in the synthesis of advanced, sequence-regulated polymers based on their mild reaction conditions, ease of use, and high atom economy. Herein, we exploit MCP methodology to introduce elemental selenium into a polymer chain, accessing a unique polymer class,i.e., polyselenoureas. These polyselenoureas can be synthesized from a broad range of commercially available starting materials, in a simple ambient temperature one-step procedure. The incorporation of selenium directly into the polymer backbone provides a unique handle for polymer characterization based on the distinctive isotope profiles exposed by high-resolution mass spectrometry, along with diagnostic signals observed in infrared and X-ray photoelectron spectroscopies. In addition, diffusion ordered spectroscopy provides access to hydrodynamic diameter information on the generated unique polymer class.

18.
Chemistry ; 21(44): 15835-42, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26493884

RESUMEN

Mesoporous monolithic hybrid cellulose-2.5-acetate (CA)/polymer supports were prepared under solvent-induced phase separation conditions using cellulose-2.5-acetate microbeads 8-14 µm in diameter, 1,1,1-tris(hydroxymethyl)propane and 4,4'-methylenebis(phenylisocyanate) as monomers as well as THF and n-heptane as porogenic solvents. 4-(Dimethylamino)pyridine and dibutyltin dilaurate (DBTDL), respectively, were used as catalysts. Monolithic hybrid supports were used in transesterification reactions of vinyl butyrate with 1-butanol under continuous, supported ionic liquid-liquid conditions with Candida antarctica lipase B (CALB) and octylmethylimidazolium tetrafluoroborate ([OMIM(+) ][BF4 (-) ]) immobilized within the CA beads inside the polymeric monolithic framework and methyl tert-butyl ether (MTBE) as the continuous phase. The new hybrid bioreactors were successfully used in dimensions up to 2×30 cm (V=94 mL). Under continuous biphasic liquid-liquid conditions a constant conversion up to 96 % was achieved over a period of 18 days, resulting in a productivity of 58 µmol mg(-1) (CALB) min(-1) . This translates into an unprecedented turnover number (TON) of 3.9×10(7) within two weeks, which is much higher than the one obtained under standard biphasic conditions using [OMIM(+) ][BF4 (-) ]/MTBE (TON=2.7×10(6) ). The continuous liquid-liquid setup based on a hybrid reactor presented here is strongly believed to be applicable to many other enzyme-catalyzed reactions.


Asunto(s)
Aminopiridinas/química , Candida/química , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Líquidos Iónicos/química , Iones/química , Isocianatos/química , Lipasa/química , Compuestos Orgánicos de Estaño/química , Glicoles de Propileno/química , Solventes/química , Biocatálisis , Candida/metabolismo , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA