Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glia ; 72(4): 728-747, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180164

RESUMEN

Senescence is a negative prognostic factor for outcome and recovery following traumatic brain injury (TBI). TBI-induced white matter injury may be partially due to oligodendrocyte demise. We hypothesized that the regenerative capacity of oligodendrocyte precursor cells (OPCs) declines with age. To test this hypothesis, the regenerative capability of OPCs in young [(10 weeks ±2 (SD)] and aged [(62 weeks ±10 (SD)] mice was studied in mice subjected to central fluid percussion injury (cFPI), a TBI model causing widespread white matter injury. Proliferating OPCs were assessed by immunohistochemistry for the proliferating cell nuclear antigen (PCNA) marker and labeled by 5-ethynyl-2'-deoxyuridine (EdU) administered daily through intraperitoneal injections (50 mg/kg) from day 2 to day 6 after cFPI. Proliferating OPCs were quantified in the corpus callosum and external capsule on day 2 and 7 post-injury (dpi). The number of PCNA/Olig2-positive and EdU/Olig2-positive cells were increased at 2dpi (p < .01) and 7dpi (p < .01), respectively, in young mice subjected to cFPI, changes not observed in aged mice. Proliferating Olig2+/Nestin+ cells were less common (p < .05) in the white matter of brain-injured aged mice, without difference in proliferating Olig2+/PDGFRα+ cells, indicating a diminished proliferation of progenitors with different spatial origin. Following TBI, co-staining for EdU/CC1/Olig2 revealed a reduced number of newly generated mature oligodendrocytes in the white matter of aged mice when compared to the young, brain-injured mice (p < .05). We observed an age-related decline of oligodendrogenesis following experimental TBI that may contribute to the worse outcome of elderly patients following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Sustancia Blanca , Humanos , Anciano , Ratones , Animales , Antígeno Nuclear de Célula en Proliferación , Encéfalo , Oligodendroglía , Ratones Endogámicos C57BL
2.
Acta Neuropathol Commun ; 10(1): 129, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064443

RESUMEN

Cerebellar dysfunction is commonly observed following traumatic brain injury (TBI). While direct impact to the cerebellum by TBI is rare, cerebellar pathology may be caused by indirect injury via cortico-cerebellar pathways. To address the hypothesis that degeneration of Purkinje cells (PCs), which constitute the sole output from the cerebellum, is linked to long-range axonal injury and demyelination, we used the central fluid percussion injury (cFPI) model of widespread traumatic axonal injury in mice. Compared to controls, TBI resulted in early PC loss accompanied by alterations in the size of pinceau synapses and levels of non-phosphorylated neurofilament in PCs. A combination of vDISCO tissue clearing technique and immunohistochemistry for vesicular glutamate transporter type 2 show that diffuse TBI decreased mossy and climbing fiber synapses on PCs. At 2 days post-injury, numerous axonal varicosities were found in the cerebellum supported by fractional anisotropy measurements using 9.4 T MRI. The disruption and demyelination of the cortico-cerebellar circuits was associated with poor performance of brain-injured mice in the beam-walk test. Despite a lack of direct input from the injury site to the cerebellum, these findings argue for novel long-range mechanisms causing Purkinje cell injury that likely contribute to cerebellar dysfunction after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Desmielinizantes , Animales , Axones/patología , Lesiones Traumáticas del Encéfalo/patología , Cerebelo/patología , Enfermedades Desmielinizantes/patología , Ratones , Células de Purkinje/patología
3.
Front Cell Neurosci ; 16: 807911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401118

RESUMEN

Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.

4.
Mol Neurobiol ; 58(11): 5876-5889, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417725

RESUMEN

Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, ß3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the ß3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.


Asunto(s)
Antiinflamatorios/uso terapéutico , Bencilaminas/uso terapéutico , Receptor 1 de Quimiocinas CX3C/deficiencia , Ciclamas/uso terapéutico , Glutamato Descarboxilasa/biosíntesis , Trombosis Intracraneal/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Receptores de GABA-A/biosíntesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Genes Reporteros , Glutamato Descarboxilasa/genética , Trombosis Intracraneal/genética , Trombosis Intracraneal/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Subunidades de Proteína , Receptores CXCR , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/biosíntesis , Receptores CXCR4/genética , Receptores de GABA-A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...