Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365827

RESUMEN

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Microbioma Gastrointestinal , Humanos , Ratones , Masculino , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Amiloidosis/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Modelos Animales de Enfermedad
2.
Aging Cell ; 23(4): e14095, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38348753

RESUMEN

As the innermost lining of the vasculature, endothelial cells (ECs) are constantly subjected to systemic inflammation and particularly vulnerable to aging. Endothelial health is hence vital to prevent age-related vascular disease. Healthy ECs rely on the proper localization of transcription factors via nuclear pore complexes (NPCs) to govern cellular behavior. Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-associated EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player in vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of EC senescence. The loss of Nup93 in human ECs induces cell senescence and promotes the expression of inflammatory adhesion molecules, where restoring Nup93 protein in senescent ECs reverses features of endothelial aging. Mechanistically, we find that both senescence and loss of Nup93 impair endothelial NPC transport, leading to nuclear accumulation of Yap and downstream inflammation. Pharmacological studies indicate Yap hyperactivation as the primary consequence of senescence and Nup93 loss in ECs. Collectively, our findings indicate that the maintenance of endothelial Nup93 is a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism of EC senescence and vascular aging.


Asunto(s)
Senescencia Celular , Células Endoteliales , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Envejecimiento/fisiología , Células Cultivadas , Inflamación/metabolismo
3.
Sci Rep ; 14(1): 1827, 2024 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-38246956

RESUMEN

It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aß amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aß pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aß burden and influences gut microbiome composition. The reduction of Aß pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Masculino , Femenino , Humanos , Animales , Ratones , Microglía , Proteínas Amiloidogénicas , Estradiol , Placa Amiloide
4.
Results Probl Cell Differ ; 70: 397-415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348116

RESUMEN

Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.


Asunto(s)
Código de Histonas , Histonas , Embarazo , Femenino , Ratones , Animales , Histonas/metabolismo , Desarrollo Embrionario/genética , Cromatina/metabolismo , Procesamiento Proteico-Postraduccional , Epigénesis Genética , Metilación de ADN , Cigoto/metabolismo
5.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34854884

RESUMEN

We previously demonstrated that lifelong antibiotic (ABX) perturbations of the gut microbiome in male APPPS1-21 mice lead to reductions in amyloid ß (Aß) plaque pathology and altered phenotypes of plaque-associated microglia. Here, we show that a short, 7-d treatment of preweaned male mice with high-dose ABX is associated with reductions of Aß amyloidosis, plaque-localized microglia morphologies, and Aß-associated degenerative changes at 9 wk of age in male mice only. More importantly, fecal microbiota transplantation (FMT) from transgenic (Tg) or WT male donors into ABX-treated male mice completely restored Aß amyloidosis, plaque-localized microglia morphologies, and Aß-associated degenerative changes. Transcriptomic studies revealed significant differences between vehicle versus ABX-treated male mice and FMT from Tg mice into ABX-treated mice largely restored the transcriptome profiles to that of the Tg donor animals. Finally, colony-stimulating factor 1 receptor (CSF1R) inhibitor-mediated depletion of microglia in ABX-treated male mice failed to reduce cerebral Aß amyloidosis. Thus, microglia play a critical role in driving gut microbiome-mediated alterations of cerebral Aß deposition.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Microglía/metabolismo , Amiloidosis/genética , Animales , Anticuerpos/administración & dosificación , Encéfalo/efectos de los fármacos , Quimiocinas/sangre , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Trasplante de Microbiota Fecal , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , RNA-Seq/métodos , Factores Sexuales
6.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321818

RESUMEN

RNA modifications play diverse roles in regulating RNA function, and viruses co-opt these pathways for their own benefit. While recent studies have highlighted the importance of N6-methyladenosine (m6A)-the most abundant mRNA modification-in regulating retrovirus replication, the identification and function of other RNA modifications in viral biology have been largely unexplored. Here, we characterized the RNA modifications present in a model retrovirus, murine leukemia virus (MLV), using mass spectrometry and sequencing. We found that 5-methylcytosine (m5C) is highly enriched in viral genomic RNA relative to uninfected cellular mRNAs, and we mapped at single-nucleotide resolution the m5C sites, which are located in multiple clusters throughout the MLV genome. Further, we showed that the m5C reader protein ALYREF plays an important role in regulating MLV replication. Together, our results provide a complete m5C profile in a virus and its function in a eukaryotic mRNA.IMPORTANCE Over 130 modifications have been identified in cellular RNAs, which play critical roles in many cellular processes, from modulating RNA stability to altering translation efficiency. One such modification, 5-methylcytosine, is relatively abundant in mammalian mRNAs, but its precise location and function are not well understood. In this study, we identified unexpectedly high levels of m5C in the murine leukemia virus RNA, precisely mapped its location, and showed that ALYREF, a reader protein that specifically recognizes m5C, regulates viral production. Together, our findings provide a high-resolution atlas of m5C in murine leukemia virus and reveal a functional role of m5C in viral replication.


Asunto(s)
5-Metilcitosina/metabolismo , Virus de la Leucemia Murina/genética , 5-Metilcitosina/fisiología , Animales , Metilación de ADN/genética , Genoma Viral/genética , Células HEK293 , Humanos , Virus de la Leucemia Murina/metabolismo , Virus de la Leucemia Murina/patogenicidad , Metiltransferasas/metabolismo , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Retroviridae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...