Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38609101

RESUMEN

BACKGROUND: Despite the current therapeutic treatments including surgery, chemotherapy, radiotherapy and more recently immunotherapy, the mortality rate of lung cancer stays high. Regarding lung cancer, epigenetic modifications altering cell cycle, angiogenesis and programmed cancer cell death are therapeutic targets to combine with immunotherapy to improve treatment success. In a recent study, we uncovered that a molecule called QAPHA ((E)-3-(5-((2-cyanoquinolin-4-yl)(methyl)amino)-2-methoxyphenyl)-N-hydroxyacrylamide) has a dual function as both a tubulin polymerization and HDAC inhibitors. Here, we investigate the impact of this novel dual inhibitor on the immune response to lung cancer. METHODS: To elucidate the mechanism of action of QAPHA, we conducted a chemical proteomics analysis. Using an in vivo mouse model of lung cancer (TC-1 tumor cells), we assessed the effects of QAPHA on tumor regression. Tumor infiltrating immune cells were characterized by flow cytometry. RESULTS: In this study, we first showed that QAPHA effectively inhibited histone deacetylase 6, leading to upregulation of HSP90, cytochrome C and caspases, as revealed by proteomic analysis. We confirmed that QAPHA induces immunogenic cell death (ICD) by expressing calreticulin at cell surface in vitro and demonstrated its efficacy as a vaccine in vivo. Remarkably, even at a low concentration (0.5 mg/kg), QAPHA achieved complete tumor regression in approximately 60% of mice treated intratumorally, establishing a long-lasting anticancer immune response. Additionally, QAPHA treatment promoted the infiltration of M1-polarized macrophages in treated mice, indicating the induction of a pro-inflammatory environment within the tumor. Very interestingly, our findings also revealed that QAPHA upregulated major histocompatibility complex class II (MHC-II) expression on TC-1 tumor cells both in vitro and in vivo, facilitating the recruitment of cytotoxic CD4+T cells (CD4+CTL) expressing CD4+, NKG2D+, CRTAM+, and Perforin+. Finally, we showed that tumor regression strongly correlates to MHC-II expression level on tumor cell and CD4+ CTL infiltrate. CONCLUSION: Collectively, our findings shed light on the discovery of a new multitarget inhibitor able to induce ICD and MHC-II upregulation in TC-1 tumor cell. These two processes participate in enhancing a specific CD4+ cytotoxic T cell-mediated antitumor response in vivo in our model of lung cancer. This breakthrough suggests the potential of QAPHA as a promising agent for cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Proteómica , Regulación hacia Arriba , Antígenos de Histocompatibilidad Clase II , Linfocitos T CD4-Positivos
2.
Ann Rheum Dis ; 83(3): 312-323, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38049981

RESUMEN

OBJECTIVES: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question. METHODS: Targeted quantitative Trp metabolomics was performed on the serum from 574 previously untreated patients with RA from the ESPOIR (Etude et Suivi des POlyarthrites Indifférenciées Récentes) cohort and 98 healthy subjects. A validation cohort involved 69 established patients with RA. Dosages were also done on the serum of collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) mice and controls. A proof-of-concept study evaluating the therapeutic potency of targeting the kynurenine pathway was performed in the CAIA model. RESULTS: Differential analysis revealed dramatic changes in Trp metabolite levels in patients with RA compared with healthy controls. Decreased levels of kynurenic (KYNA) and xanthurenic (XANA) acids and indole derivatives, as well as an increased level of quinolinic acid (QUIN), were found in the serum of patients with RA. They correlated positively with disease severity (assessed by both circulating biomarkers and disease activity scores) and negatively with quality-of-life scores. Similar profiles of kynurenine pathway metabolites were observed in the CAIA and CIA models. From a mechanistic perspective, we demonstrated that QUIN favours human fibroblast-like synoviocyte proliferation and affected their cellular metabolism, through inducing both mitochondrial respiration and glycolysis. Finally, systemic administration of the recombinant enzyme aminoadipate aminotransferase, responsible for the generation of XANA and KYNA, was protective in the CAIA model. CONCLUSIONS: Altogether, our preclinical and clinical data indicate that alterations in the Trp metabolism play an active role in the pathogenesis of RA and could be considered as a new therapeutic avenue.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Triptófano/uso terapéutico , Quinurenina/uso terapéutico , Biomarcadores , Artritis Experimental/patología
3.
Allergy ; 79(2): 471-484, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010857

RESUMEN

BACKGROUND: Food allergy (FA) is an inappropriate immunological response to food proteins resulting from an impaired induction of oral tolerance. Various early environmental factors can affect the establishment of intestinal homeostasis, predisposing to FA in early life. In this context, we aimed to assess the effect of chronic perinatal exposure to food-grade titanium dioxide (fg-TiO2 ), a common food additive. METHODS: Dams were fed a control versus fg-TiO2 -enriched diet from preconception to weaning, and their progeny received the same diet at weaning. A comprehensive analysis of baseline intestinal and systemic homeostasis was performed in offspring 1 week after weaning by assessing gut barrier maturation and microbiota composition, and local and systemic immune system and metabolome. The effect of fg-TiO2 on the susceptibility of progeny to develop oral tolerance versus FA to cow's milk proteins (CMP) was performed starting at the same baseline time-point, using established models. Sensitization to CMP was investigated by measuring ß-lactoglobulin and casein-specific IgG1 and IgE antibodies, and elicitation of the allergic reaction by measuring mouse mast cell protease (mMCP1) in plasma collected after an oral food challenge. RESULTS: Perinatal exposure to fg-TiO2 at realistic human doses led to an increased propensity to develop FA and an impaired induction of oral tolerance only in young males, which could be related to global baseline alterations in intestinal barrier, gut microbiota composition, local and systemic immunity, and metabolism. CONCLUSIONS: Long-term perinatal exposure to fg-TiO2 alters intestinal homeostasis establishment and predisposes to food allergy, with a clear gender effect.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad a la Leche , Humanos , Masculino , Embarazo , Femenino , Bovinos , Ratones , Animales , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/metabolismo , Inmunoglobulina G , Caseínas , Dieta , Homeostasis
4.
mSystems ; 8(6): e0084123, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882535

RESUMEN

IMPORTANCE: The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.


Asunto(s)
Kluyveromyces , Probióticos , Candida , Inflamación , Probióticos/uso terapéutico
5.
Front Med (Lausanne) ; 10: 1087715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601783

RESUMEN

Introduction: Antibiotic effects on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the mycobiota, the fungal part of the microbiota and how the length of administration influences both microbiota. Here, we examined the effect of antibiotics (ATB) on the composition of bacterial and fungal microbiota and how the administration of Saccharomyces boulardii CNCM I-745 influences both microbiota. Methods: In order to get closer to the human microbiota, the mice used in this study were subjected to fecal microbiota transfer (FMT) using human feces and subsequently called human microbiotaassociated (HMA) mice. These mice were then treated with amoxicillinclavulanate antibiotics and supplemented with S. boulardii during and after ATB treatment to understand the effect of the yeast probiotic on both bacterial and fungal microbiota. Bacterial and fungal microbiota analyses were done using 16S and ITS2 rRNA amplicon-based sequencing. Results: We showed that the administration of S. boulardii during ATB treatment had very limited effect on the fungal populations on the long term, once the yeast probiotic has been cleared from the gut. Concerning bacterial microbiota, S. boulardii administration allowed a better recovery of bacterial populations after the end of the ATB treatment period. Additionally, 16S and ITS2 rRNA sequence analysis revealed that 7 additional days of S. boulardii administration (17 days in total) enhanced the return of the initial bacterial equilibrium. Discussion: In this study, we provide a comprehensive analysis of how probiotic yeast administration can influence the fungal and bacterial microbiota in a model of broad-spectrum antibiotherapy.

6.
Microbiome ; 11(1): 73, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032359

RESUMEN

BACKGROUND: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota. DESIGN: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota. Bacterial and fungal communities were subjected to qPCR or 16S and ITS2 amplicon-based sequencing for microbiota analysis. In vitro assays further characterized bacterial-fungal interactions, with mixed cultures between specific bacteria and fungi. RESULTS: Amoxicillin-clavulanic acid treatment triggered a decrease in the total fungal population in mouse feces, while other antibiotics had opposite effects on the fungal load. This decrease is accompanied by a total remodelling of the fungal population with the enrichment in Aspergillus, Cladosporium, and Valsa genera. In the presence of amoxicillin-clavulanic acid, microbiota analysis showed a remodeling of bacterial microbiota with an increase in specific bacteria belonging to the Enterobacteriaceae. Using in vitro assays, we isolated different Enterobacteriaceae species and explored their effect on different fungal strains. We showed that Enterobacter hormaechei was able to reduce the fungal population in vitro and in vivo through yet unknown mechanisms. CONCLUSIONS: Bacteria and fungi have strong interactions within the microbiota; hence, the perturbation initiated by an antibiotic treatment targeting the bacterial community can have complex consequences and can induce opposite alterations of the mycobiota. Interestingly, amoxicillin-clavulanic acid treatment has a deleterious effect on the fungal community, which may have been partially due to the overgrowth of specific bacterial strains with inhibiting or competing effects on fungi. This study provides new insights into the interactions between fungi and bacteria of the intestinal microbiota and might offer new strategies to modulate gut microbiota equilibrium. Video Abstract.


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio , Microbiota , Humanos , Ratones , Animales , Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Antibacterianos/farmacología , Tracto Gastrointestinal/microbiología , Hongos , Bacterias/genética
7.
Gut ; 72(7): 1296-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270778

RESUMEN

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Intestinos , Inflamación
8.
Gut ; 72(6): 1081-1092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36167663

RESUMEN

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Neutrófilos/metabolismo , Supervivencia Celular , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo
9.
J Fungi (Basel) ; 8(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36135618

RESUMEN

Food processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota. We undertook a comprehensive characterization of five mold strains, Penicillium camemberti, P. nalgiovense, P. roqueforti, Fusarium domesticum, and Geotrichum candidum used in food processes, on their ability to trigger or protect intestinal inflammation using in vitro human cell models and in vivo susceptibility to sodium dextran sulfate-induced colitis. Comparison of spore adhesion to epithelial cells showed a very wide disparity in results, with F. domesticum and P. roqueforti being the two extremes, with almost no adhesion and 20% adhesion, respectively. Interaction with human immune cells showed mild pro-inflammatory properties of all Penicillium strains and no effect of the others. However, the potential anti-inflammatory abilities detected for G. candidum in vitro were not confirmed in vivo after oral gavage to mice before and during induced colitis. According to the different series of experiments carried out in this study, the impact of the spores of these molds used in food production is limited, with no specific beneficial or harmful effect on the gut.

10.
Microbiome ; 10(1): 91, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698210

RESUMEN

BACKGROUND: Innate immunity genes have been reported to affect susceptibility to inflammatory bowel diseases (IBDs) and colitis in mice. Dectin-1, a receptor for fungal cell wall ß-glucans, has been clearly implicated in gut microbiota modulation and modification of the susceptibility to gut inflammation. Here, we explored the role of Dectin-1 and Dectin-2 (another receptor for fungal cell wall molecules) deficiency in intestinal inflammation. DESIGN: Susceptibility to dextran sodium sulfate (DSS)-induced colitis was assessed in wild-type, Dectin-1 knockout (KO), Dectin-2KO, and double Dectin-1KO and Dectin-2KO (D-1/2KO) mice. Inflammation severity, as well as bacterial and fungal microbiota compositions, was monitored. RESULTS: While deletion of Dectin-1 or Dectin-2 did not have a strong effect on DSS-induced colitis, double deletion of Dectin-1 and Dectin-2 significantly protected the mice from colitis. The protection was largely mediated by the gut microbiota, as demonstrated by fecal transfer experiments. Treatment of D-1/2KO mice with opportunistic fungal pathogens or antifungal agents did not affect the protection against gut inflammation, suggesting that the fungal microbiota had no role in the protective phenotype. Amplicon-based microbiota analysis of the fecal bacterial and fungal microbiota of D-1/2KO mice confirmed the absence of changes in the mycobiota but strong modification of the bacterial microbiota. We showed that bacteria from the Lachnospiraceae family were at least partly involved in this protection and that treatment with Blautia hansenii was enough to recapitulate the protection. CONCLUSIONS: Deletion of both the Dectin-1 and Dectin-2 receptors triggered a global shift in the microbial gut environment, affecting, surprisingly, mainly the bacterial population and driving protective effects in colitis. Members of the Lachnospiraceae family seem to play a central role in this protection. These findings provide new insights into the role of the Dectin receptors, which have been described to date as affecting only the fungal population, in intestinal physiopathology and in IBD. Video Abstract.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Micobioma , Animales , Bacterias/genética , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Inflamación , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
Cell Rep ; 36(1): 109332, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233192

RESUMEN

Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.


Asunto(s)
Ácidos Grasos Volátiles/farmacología , Microbioma Gastrointestinal , Interleucina-17/biosíntesis , Intestinos/citología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Adulto , Animales , Ciego/citología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Interleucinas/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Vancomicina/farmacología , Interleucina-22
12.
Cell Metab ; 32(4): 514-523, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32946809

RESUMEN

The gut microbiota is implicated in immune system functions. Regulation of the metabolic processes occurring in immune cells is crucial for the maintenance of homeostasis and immunopathogenesis. Emerging data demonstrate that the gut microbiota is an actor in immunometabolism, notably through the effect of metabolites such as short-chain fatty acids, bile acids, and tryptophan metabolites. In this Perspective, we discuss the impact of the gut microbiota on the intracellular metabolism of the different subtypes of immune cells, including intestinal epithelial cells. Besides the effects on health, we discuss the potential consequences in infection context and inflammatory bowel diseases.


Asunto(s)
Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Animales , Microbioma Gastrointestinal , Humanos , Sistema Inmunológico/metabolismo , Intestinos/citología
13.
Front Immunol ; 11: 144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161582

RESUMEN

Airborne ozone exposure causes severe lung injury and inflammation. The aryl hydrocarbon Receptor (AhR) (1), activated in pollutant-induced inflammation, is critical for cytokine production, especially IL-22 and IL-17A. The role of AhR in ozone-induced lung inflammation is unknown. We report here that chronic ozone exposure activates AhR with increased tryptophan and lipoxin A4 production in mice. AhR-/- mice show increased lung inflammation, airway hyperresponsiveness, and tissue remodeling with an increased recruitment of IL-17A and IL-22-expressing cells in comparison to control mice. IL-17A- and IL-22-neutralizing antibodies attenuate lung inflammation in AhR-/- and control mice. Enhanced lung inflammation and recruitment of ILC3, ILC2, and T cells were observed after T cell-specific AhR depletion using the AhRCD4cre-deficient mice. Together, the data demonstrate that ozone exposure activates AhR, which controls lung inflammation, airway hyperresponsiveness, and tissue remodeling via the reduction of IL-22 expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Interleucinas/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Ozono/efectos adversos , Neumonía/inducido químicamente , Neumonía/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linfocitos T CD4-Positivos/inmunología , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Lipoxinas/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/genética , Receptores de Interleucina-17/genética , Hipersensibilidad Respiratoria/tratamiento farmacológico , Triptófano/metabolismo , Interleucina-22
14.
Cell Metab ; 28(5): 737-749.e4, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057068

RESUMEN

The extent to which microbiota alterations define or influence the outcome of metabolic diseases is still unclear, but the byproducts of microbiota metabolism are known to have an important role in mediating the host-microbiota interaction. Here, we identify that in both pre-clinical and clinical settings, metabolic syndrome is associated with the reduced capacity of the microbiota to metabolize tryptophan into derivatives that are able to activate the aryl hydrocarbon receptor. This alteration is not merely an effect of the disease as supplementation with AhR agonist or a Lactobacillus strain, with a high AhR ligand-production capacity, leads to improvement of both dietary- and genetic-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis, through improvement of intestinal barrier function and secretion of the incretin hormone GLP-1. These results highlight the role of gut microbiota-derived metabolites as a biomarker and as a basis for novel preventative or therapeutic interventions for metabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Animales , Limosilactobacillus reuteri/metabolismo , Ligandos , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/terapia , Ratones , Ratones Endogámicos C57BL , Probióticos/uso terapéutico , Receptores de Hidrocarburo de Aril/agonistas
15.
Sci Rep ; 8(1): 10611, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006538

RESUMEN

Environmental air pollutants including ozone cause severe lung injury and aggravate respiratory diseases such as asthma and COPD. Here we compared the effect of ozone on respiratory epithelium injury, inflammation, hyperreactivity and airway remodeling in mice upon acute (1ppm, 1 h) and chronic exposure (1.5ppm, 2 h, twice weekly for 6 weeks). Acute ozone exposure caused respiratory epithelial disruption with protein leak and neutrophil recruitment in the broncho-alveolar space, leading to lung inflammation and airway hyperresponsiveness (AHR) to methacholine. All these parameters were increased upon chronic ozone exposure, including collagen deposition. The structure of the airways as assessed by automatic numerical image analysis showed significant differences: While acute ozone exposure increased bronchial and lumen circularity but decreased epithelial thickness and area, chronic ozone exposure revealed epithelial injury with reduced height, distended bronchioles, enlarged alveolar space and increased collagen deposition, indicative of peribronchiolar fibrosis and emphysema as characterized by a significant increase in the density and diameter of airspaces with decreased airspace numbers. In conclusion, morphometric numerical analysis enables an automatic and unbiased assessment of small airway remodeling. The structural changes of the small airways correlated with functional changes allowing to follow the progression from acute to chronic ozone induced respiratory pathology.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Lesión Pulmonar/patología , Ozono/toxicidad , Neumonía/patología , Hipersensibilidad Respiratoria/patología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/inmunología , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/inmunología , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Pruebas de Toxicidad Aguda/métodos , Pruebas de Toxicidad Crónica/métodos
16.
Front Immunol ; 9: 916, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867931

RESUMEN

Air pollution associated with ozone exposure represents a major inducer of respiratory disease in man. In mice, a single ozone exposure causes lung injury with disruption of the respiratory barrier and inflammation. We investigated the role of interleukin-1 (IL-1)-associated cytokines upon a single ozone exposure (1 ppm for 1 h) using IL-1α-, IL-1ß-, and IL-18-deficient mice or an anti-IL-1α neutralizing antibody underlying the rapid epithelial cell death. Here, we demonstrate the release of the alarmin IL-1α after ozone exposure and that the acute respiratory barrier injury and inflammation and airway hyperreactivity are IL-1α-dependent. IL-1α signaling via IL-1R1 depends on the adaptor protein myeloid differentiation factor-88 (MyD88). Importantly, epithelial cell signaling is critical, since deletion of MyD88 in lung type I alveolar epithelial cells reduced ozone-induced inflammation. In addition, intratracheal injection of recombinant rmIL-1α in MyD88acid mice led to reduction of inflammation in comparison with wild type mice treated with rmIL-1α. Therefore, a major part of inflammation is mediated by IL-1α signaling in epithelial cells. In conclusion, the alarmin IL-1α released upon ozone-induced tissue damage and inflammation is mediated by MyD88 signaling in epithelial cells. Therefore, IL-1α may represent a therapeutic target to attenuate ozone-induced lung inflammation and hyperreactivity.


Asunto(s)
Epitelio/patología , Inflamación/inmunología , Interleucina-1alfa/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Ozono/efectos adversos , Transducción de Señal , Animales , Diferenciación Celular , Epitelio/inmunología , Femenino , Inflamación/tratamiento farmacológico , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Receptores Tipo I de Interleucina-1/inmunología
17.
J Allergy Clin Immunol ; 142(3): 942-958, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29331644

RESUMEN

BACKGROUND: IL-33 plays a critical role in regulation of tissue homeostasis, injury, and repair. Whether IL-33 regulates neutrophil recruitment and functions independently of airways hyperresponsiveness (AHR) in the setting of ozone-induced lung injury and inflammation is unclear. OBJECTIVE: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice. METHODS: ST2- and Il33-deficient, IL-33 citrine reporter, and C57BL/6 (wild-type) mice underwent a single ozone exposure (1 ppm for 1 hour) in all studies. Cell recruitment in lung tissue and the bronchoalveolar space, inflammatory parameters, epithelial barrier damage, and airway hyperresponsiveness (AHR) were determined. RESULTS: We report that a single ozone exposure causes rapid disruption of the epithelial barrier within 1 hour, followed by a second phase of respiratory barrier injury with increased neutrophil recruitment, reactive oxygen species production, AHR, and IL-33 expression in epithelial and myeloid cells in wild-type mice. In the absence of IL-33 or IL-33 receptor/ST2, epithelial cell injury with protein leak and myeloid cell recruitment and inflammation are further increased, whereas the tight junction proteins E-cadherin and zonula occludens 1 and reactive oxygen species expression in neutrophils and AHR are diminished. ST2 neutralization recapitulated the enhanced ozone-induced neutrophilic inflammation. However, myeloid cell depletion using GR-1 antibody reduced ozone-induced lung inflammation, epithelial cell injury, and protein leak, whereas administration of recombinant mouse IL-33 reduced neutrophil recruitment in Il33-deficient mice. CONCLUSION: Data demonstrate that ozone causes an immediate barrier injury that precedes myeloid cell-mediated inflammatory injury under the control of the IL-33/ST2 axis. Thus IL-33/ST2 signaling is critical for maintenance of intact epithelial barrier and inflammation.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Lesión Pulmonar/inmunología , Oxidantes/toxicidad , Ozono/toxicidad , Animales , Femenino , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
18.
Nat Immunol ; 19(2): 130-140, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255269

RESUMEN

Reactive oxygen species (ROS) are generated by virus-infected cells; however, the physiological importance of ROS generated under these conditions is unclear. Here we found that the inflammation and cell death induced by exposure of mice or cells to sources of ROS were not altered in the absence of canonical ROS-sensing pathways or known cell-death pathways. ROS-induced cell-death signaling involved interactions among the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5 -/- mice showed exacerbated lung inflammation and proinflammatory cytokines in an ozone-exposure model. Similarly, challenge with influenza A virus led to increased infiltration of the virus, lymphocytic bronchiolitis and reduced survival of Pgam5 -/- mice. This pathway, which we have called 'oxeiptosis', was a ROS-sensitive, caspase independent, non-inflammatory cell-death pathway and was important for protection against inflammation induced by ROS or ROS-generating agents such as viral pathogens.


Asunto(s)
Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Factor Inductor de la Apoptosis/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal/fisiología
19.
Eur J Immunol ; 46(11): 2531-2541, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27569535

RESUMEN

Allergic asthma is characterized by a strong Th2 response with inflammatory cell recruitment and structural changes in the lung. Papain is a protease allergen disrupting the airway epithelium triggering a rapid inflammation with eosinophilia mediated by innate lymphoid cell activation (ILC2) and leading to a Th2 immune response. In this study, we focused on inflammatory responses to a single exposure to papain and showed that intranasal administration of papain results in the recruitment of inflammatory cells, including neutrophils and eosinophils with a rapid production of IL-1α, IL-1ß, and IL-33. The inflammatory response is abrogated in the absence of IL-1R1 and MyD88. To decipher the cell type(s) involved in MyD88-dependent IL-1R1/MyD88 signaling, we used new cell-specific MyD88-deficient mice and found that the deletion of MyD88 signaling in single cell types such as T cells, epithelial cells, CD11c-positive or myeloid cells leads to only a partial inhibition compared to complete absence of MyD88, suggesting that several cell types contribute to the response. Importantly, the inflammatory response is largely ST2 and IL-36R independent. In conclusion, IL-1R1 signaling via MyD88 is critical for the first step of inflammatory response to papain.


Asunto(s)
Alérgenos/inmunología , Inmunidad Innata , Pulmón/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Papaína/inmunología , Neumonía/inmunología , Receptores Tipo I de Interleucina-1/metabolismo , Alérgenos/administración & dosificación , Animales , Eosinófilos/inmunología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Pulmón/fisiopatología , Ratones , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Neutrófilos/inmunología , Papaína/administración & dosificación , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal , Células Th2/inmunología
20.
Am J Clin Exp Immunol ; 5(1): 33-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27168953

RESUMEN

Exposure to ambient ozone causes airway hyperreactivity and lung inflammation, which represent an important health concern in humans. Recent clinical and experimental studies contributed to the understanding of the mechanisms of epithelial injury, inflammation and airway hyperreactivity, which is reviewed here. The present data suggest that ozone induced oxidative stress causes inflammasome activation with the release of IL-1, other cytokines and proteases driving lung inflammation leading to the destruction of alveolar epithelia with emphysema and respiratory failure. Insights in the pathogenic pathway may allow to identify novel biomarkers of ozone-induced lung disease and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...